anCom

AnCom E-9

Анализатор потоков E1 с максимальным набором функций

Назначение

Измерение показателей ошибок потоков E1 2048 кбит/с в соответствии с рек. ITU-T G.821, G.826, M.2100 и приказом Минсвязи РФ №92 от 10.08.96.

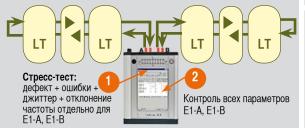
Измерение джиттера, задержки, формы импульса и других параметров, влияющих на качество передачи.

Измерение параметров кабелей, применяемых для передачи стыкового сигнала.

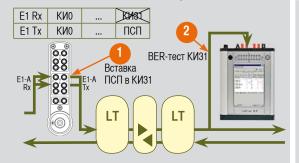
Варианты использования

Анализатор может использоваться при вводе в эксплуатацию, техобслуживании, поиске и устранении неисправностей оборудования, имеющего стыки E1.

Измерения без остановки связи


Контроль всех типов аварий, ошибок, проскальзываний одновременно с измерением физических параметров в одном или двух направлениях. Просмотр содержимого КИ, контроль битов Sa, CAS.

Контроль двух направлений упрощает анализ причин возникновения внештатных ситуаций.


Измерения с остановкой связи

Испытания по направлениям или по шлейфу. Возможны одновременныее испытания двух трактов:

Контроль в режиме транзита

Возможности тестирования работающего оборудования: вставка ПСП, битов CAS, дефектов и ошибок.

Измерение и имитация задержки

Измерение MTJ и JTF

Измерение устойчивости проверяемого оборудования к входному джиттеру (МТЈ); измерение зависимости коэффициента передачи джиттера от частоты (JTF):

Тх: 2048 кбит/с + джиттер (ряд частот)

Измерение аналог-цифра

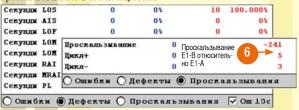
Выполнение измерений

Функции анализатор<mark>а представл</mark>ены кнопками главного окна, доступ ко всем функциям при минимуме нажатий:

Стресс-тестирование: ввод дефекта, нескольких типов ошибок, джиттера и откл. частоты одновременно. Кнопки окон управляют вводом дефектов, ошибок, сбросом LED-индикаторов, например:

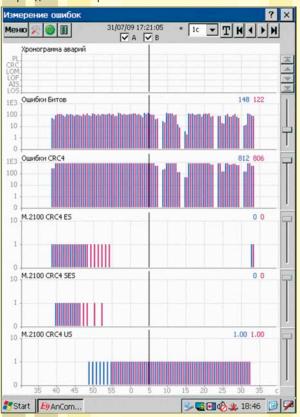
🄰 🥑 💹 📗 – ввод деф<mark>екта (кнопка нажата стилусом).</mark>

Настройка измерений с помощью загрузки сохраненных ранее конфигураций. Встроенный микрофон и динамик, формирование и воспроизведение сигналов ТЧ в КИ:

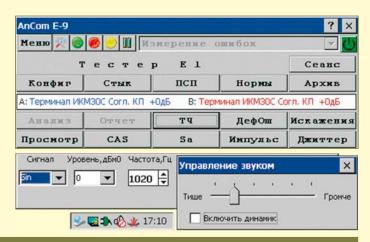

Контекстный Help со справочными приложениями.

Тестер стыка Е1

Физические параметры сигналов Е1-А, Е1-В (текущие и Мах значения) и показатели ошибок (количество и Кош) совместно отображаются в главном окне:

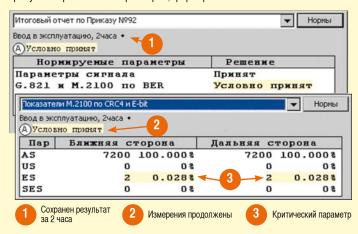


Дополнительно отображается количество и % секунд авар<mark>ий ил</mark>и текущее проскальзывание в битах и циклах:



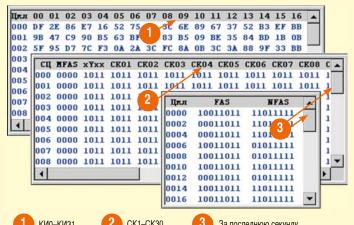
Анализ временных диаграмм

Совместный вывод хронограммы аварий, гистограмм распределения ошибок и секунд с ошибками, диаграмм временных зависимостей физических параметров для анализа причины понижения качества:

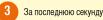

<mark>Отоб</mark>ражение <mark>резул</mark>ьтатов Е1-А, Е1-В на одном экране. Соп<mark>остав</mark>ление на экране <mark>любых изме</mark>ряемых параметров с интервалом 1 с, 1 <mark>мин, 15 мин,</mark> 1 ч, д. Сохранение временных диаграмм в архиве измерений.

Паспортизация каналов и трактов

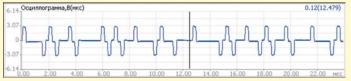
Долговременные и оперативные измерения согласно приказу Минсвязи РФ №92 при вводе в эксплуатацию, техобслуживании и восстановлении после ремонта


Расчет норм по заданным характеристикам участков, измерение показателей ошибок в соответствии с рек. ITU-T G.821, G.826, M.2100, измерение требуемых физических параметров, формирование отчетов:

Архив измерений

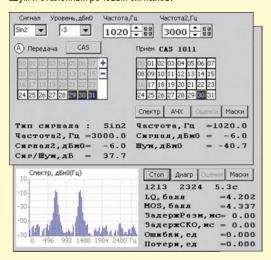


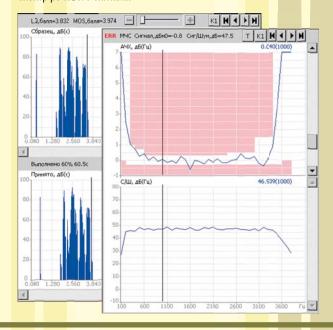
Просмотр КИ, CAS, FAS/NFAS в виде таблиц:



Анализ формы импульса

Измеряются параметры отдельно положительных и отрицательных импульсов, а также баланс их энергии, длительности и амплитуды. Проверяется соответствие импульсов маске, заданной в рек. МСЭ-Т G.703:


Осциллограмма сигнала Е1: время развертки 25 мкс, частота дискретизации 81.92 МГц.


Выбрано табличное представление отрицательного импульса

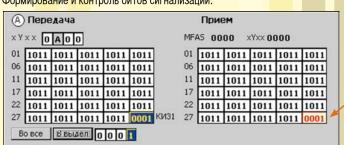
Анализ каналов ТЧ, измерение качества передачи речи (Р.862)

Формирование и измерение в КИ сигналов Sin, Sin2, O.131, МЧС, Шум и эталонных речевых сигналов:

Аналого-цифровые измерения каналов ТЧ совместно с AnCom TDA-5 Измерение **качества передачи речи** параллельно с AnCom TDA-9. Характеристики затухания (АЧХ) и защищенности (С/Ш) сигнала МЧС; спектр речевого сигнала:

Контроль служебных битов (Sa)

Формирование и контроль S-битов FAS/NFAS:


Контроль Sa-битов возможен в двух направлениях, подключенных к входам E1-A, E1-B.

(A) 05/02/09 19:16:08 Maxx.ES=2 Vintepe

| No. | No.

Контр<mark>оль сигнал</mark>изации CAS

Формирование и контроль битов сигнализации:

Контро<mark>ль действую</mark>щей сигнализации возможен в двух направлениях, подключенных к входам Е1-А, Е1-В.

Tpa Tpa OTO Xap COO (10) Tpa OTO (10) (2) (3) (4) (4) (5) (6) (7) (7) (8) (8) (9) (9) (10)

Не соответствует шаб-

Измерение MTJ и JTF

Графическое и табличное отображение измеряемых характеристик, проверка соответствия шаблонам:

Измерение задержки

Задержка распространения (текущее, Min и Max значения) отображается в главном окне совместно с физическими параметрами сигнала.

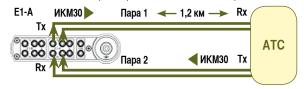
ние ABCD

в СК30

00д00:24	:56	A	Пик
Уровень,	цБ	-1.0	-11.0
отклЧасто	ти,Гц	0	1
ДжиттерП	P1,EM	0.085	0.535
ДжиттерП	P2,EH	0.025	0.135
Задержка	, EC	0.081	0.081
Hin,	, EC		0.079
Задержка	EH.	166	166
Hin	,EN		162

Сохраняется временная диаграмма задержкии других параметров с интервалом 1 с, 1 мин, 15 мин, 1 ч, 1 д.

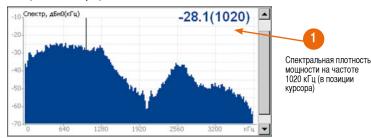
Анализ кабеля

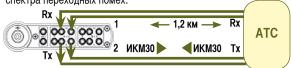

Измерение параметров кабелей, используемых для передачи стыкового сигнала Е1

Режим измерений	Генератор		
Затухание на полутактовой частоте	SIN 1024κΓц		
Уровень рабочего сигнала	E1		
AЧХ рабочего затухания и NEXT	МЧС		
Уровень шума	Блокирован		
Спектр во всех режимах	SIN,E1,MЧС,Блк		
Рефлектометр – поиск дефектов кабеля	ПСС		

приемника ПСП

Пример использования:


поиск причин возникновения ошибок при подключении по длинной линии без блокировки рабочего сигнала со стороны ATC:

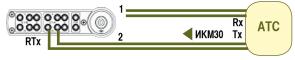

1) Измерение рабочего сигнала - обнаружены ошибки:

Измерение спектра рабочего сигнала:

2) Выполняется изменение подключения анализатора для определения спектра переходных помех:

Переходные помехи в паре № 1 создаются выходным сигналом анализатора (NEXT) и рабочим сигналом со стороны ATC (FEXT). Можно пренебречь FEXT по причине большого затухания рабочего сигнала в линии и считать измеренные переходные помехи в паре № 1 совпадающими с переходными помехами в паре № 2 в рабочем режиме. В соответствии с рек. G.703 п. 9.3 должно выполняться условие: отношение сигнал/помеха на частоте 1020 кГц ≥ 18 дБ.

Измерение **спектра** помех: отношение сигнал/помеха на частоте $1020\ \text{к}\Gamma\text{ц} = -28.1 - (-35.8) = 7.7\ \text{дБ} < \text{допуска.}$


3) Аналогичный результат может быть получен при измерении **АЧХ** переходного затухания **NEXT**:

сигнал/помеха = 24,4-17,0=7,4 дБ < допуска.

Причиной снижения NEXT часто являются дефекты кабеля.

4) Корреляционный **рефлектометр** позволяет выявить дефекты кабельных пар на фоне сигнала, передающегося со стороны ATC:

Вывод: обнаружены отражения от неоднородностей для пары № 2. Осмотр кабеля на удалении 24.4 и 46.4 м выявил расщепление пары, после устранения которого обеспечено безошибочное подключение оборудования.

Измерительные возможности анализаторов потока Е1

Nomophi orbible beemerkileeth allamearepeb liefeka El									
	MAKC-E1	MAKC-E10	BERcut-E1	Дельта-Про+	AFK3	AnCom E-9			
Количество измерительных каналов Е1	2	2	1	1	2	2			
Измерения по ITU-T G.821, G.826, M.2100	+	+	+	+	+	+1			
Измерение джиттера	-	+	+	-	+	+			
Измерение характеристик MTJ и JTF	-	+	+	-	+	+			
Измерение задержки	-	-	+	-	-	+			
Тестирование каналов ТЧ	+	+	+	-	+	+2			
Анализ формы импульса	-	+	+	+	-	+			
Анализ кабеля	-	-	-	+	-	+			

¹ Встроенный расчет норм и оценка качества в соответствии с приказом Минсвязи РФ №92.

² Расширенный набор сигналов и измеряемых параметров, совместимость с анализатором AnCom TDA-5.