Сети широкополосного абонентского доступа –

Нормирование цифровых линий

OOO «Аналитик-ТС»
Россия, 125424, Москва, Волоколамское шоссе,73
+7(495)775-60-11 www.analytic.ru info@analytic.ru

ADSL2+ ADSL2 ADSL

SHDSL.bis SHDSL HDSL

Цель нормирования сетей широкополосного абонентского доступа:

- обеспечение эксплуатационной надежности <u>сети</u>
- достигается выполнением регламентированных процедур инсталляции цифровых <u>линий</u>

Цифровые линии (xDSL):

```
HDSL
         до 2 Мбит/с
         до 4 Мбит/с
SHDSL
SHDSL.bis до 6 Мбит/с
ADSL
         до 8 Мбит/с
ADSL2
         до 12 Мбит/с
ADSL2+
         до 24 Мбит/с
ADSL4
         до 50 Мбит/с
```

Процедуры инсталляции цифровых линий:

- контроль расходования скоростного потенциала многопарного кабеля и
- нормирование параметров электромагнитной совместимости (ЭМС) цифровых линий

Нормативные документы:

Рекомендации ITU-T

G.99x.x, L.19, K.24

МЭК 62255

OCT 45.36-97, 45.62-97, 45.81-97

OCT 45.82-96, 45.83-96

Стандарты, правила, справочники

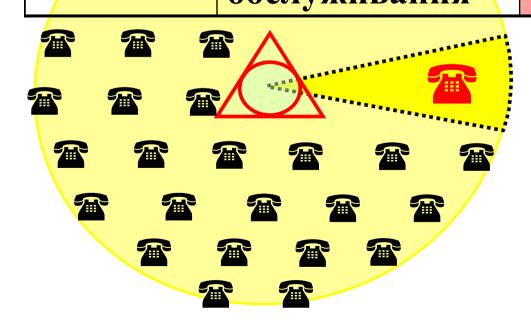
Правила применения оборудования проводных и оптических систем передачи абонентского доступа

(Утверждены приказом Министерства информационных технологий и связи Российской Федерации № 112 от 24.08.06)

А.С. Брискер и др. Городские телефонные кабели.

Справочник. Радио и связь, Москва. 1991

Ю.А. Парфенов. Кабели электросвязи. Экотрендз, Москва. 2003


Задача измерений - квалифицированное принятие решений:

- по выбраковке пар, несоответствующих норме скорости
- при поиске и устранении источников недопустимых помех
- о необходимости выполнения ремонта кабеля

Любой результат измерений представляет интерес только в сопоставлении с нормой.

Что нормировано для xDSL?

Макс. затухание по ОСТ 45.36-97: 4,5 дБ (0,8 кГц)					
Тип кабеля		ТП-0,4	ТП-0,5		
Длина абонент.	Максимальная	4,5дБ/1,54дБ/км= 2,9	4,5дБ/1,23дБ/км= 3,7		
линии, КМ	Усредненная по площади зоны	2,1	2,6		

Параметры местных сетей			Норма	Факт	
Длина абонентской линии, км		Макс.	2,9(ТП-0,4)	3,7(тп-0,5)	
		Средняя	2,1(ТП-0,4)	2,6(ТП-0,5)	
Емкость пары, нФ/км		=50 (OCT 45.82-96)	↑ до 60 и ↑		
Частотные характеристики кабелей — диапазон частот до 4 МГц	Затухание асимметрии, дБ		>40 (ITU-T L.19)	↓ до 20	
	NEXT, дБ		>4456 (L.19)	↓ до 20	
	ELFEX	Т, дБ	>3854 (L.19)	↓ до 20	
	Затухание отражения, дБ		>16 (ITU-T L.19)	↓ до 10	
Спектры допустимых помех		ETSI A	ETSI B и ↑		
Типы АТС			АТС-Э	АТС-К	
SHDSL, SHDSL.bis, ADSL, ADSL2, ADSL2+, ADSL4: до 50Мбит/с					

Нормирование цифровой линии должно осуществляться по потребительскому параметру -

по скорости

Эксплуатационная надежность сетей xDSL должна быть обеспечена регламентированием процедуры инсталляции Каждой ЛИНИИ

Контроль пар должен выполняться приборами, поддерживающими систему норм и обеспечивающими автоматический учет норм при

Источники норм xDSL:

ITU-T L.19*

- нормы асимметрии нормы NEXT
- нормы ELFEXT

ITU-T G.996.1**

- норма помех ETSI B Кабельные справочники
- номинальные ЧХ передачи и импеданса Норма уплотнения - 30% (3 пары в десятке)

*MCЭ-Т L.19 Многопарные медные сетевые кабели, обеспечивающие одновременную работу нескольких служб таких как POTS, ISDN и xDSL. 11/2003. Учтен опыт Франции, Индии, Бразилии

** ITU-T G.996.1 Test procedures for digital subscriber line (DSL) transceivers. 02/2001

xDSL\ГодностьПары\Модели xDSL

Какова помехозащищенность оконечного оборудования xDSL?

Модуляция	DMT	PAM
Линейная скорость, кбит/с	ADSL до 8000 ADSL2 до 12000 ADSL2+ до 24000 ADSL4 до 48000	SHDSL до 3840 SHDSL.bis до 5696
Спектр, дБм/10кГц	-30 -35 -40 -45 -50 -60 -70 -75 0 500 KFu	Henpepsibhin -10 -20 -30 -40 -50 -70 -100 -100 -100 -100 -100 -100 -100
Помехо- защищен- ность, дБ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

xDSL\ГодностьПары\Модели xDSL

Математические модели xDSL

должны быть встроены в xDSL-анализатор

Скоростной потенциал ADSL/ADSL2/ADSL2+/ADSL4 (down)

$$\begin{cases} V_{DMT} = f_{symb} \sum_{i=i_0}^{i=i_1} K_i \\ K_i \approx [0,33(R(f_i) - \Delta R)] \\ K_i \leq K_{\max} = 4...12 \quad \Delta R = 6 + 10dB \end{cases}$$

Запас помехозащищенности SHDSL / SHDSL.bis

$$\begin{cases} \Delta R_{DSL} = \min_{f = f_0 \dots f_1} (R(f) - (R_{\min} + \Delta R)) \\ R_{\min} = 10 \lg(2^K - 1) \\ K = V_{DSL} / (f_1 - f_0) \quad \Delta R = 6 + 10 dB \end{cases}$$

xDSL\ГодностьПары\Выбор норм

Как выбрать нормы xDSL, чтобы результатом введения нормирования стал бы

расцвет сети иирокополосного доступа?

xDSL Γ одность Π арыBыбор норм

Нормирование цифровой линии скорости

Нормируются не характеристики кабелей или шумы, а нормируется потребительская характеристика - скорость

Норма скорости = ? Три сценария:

Источники норм xDSL: ITU-T L.19

- нормы асимметрии
- нормы NEXT
- нормы ELFEXT

ITU-T G.996.1

- норма помех ETSI B Кабельные справочники
- номинальные ЧХ передачи и импеданса

Норма уплотнения

- 30% (3 пары в десятке)

Минимум хлопот (минимализм)

Взвешенный подход

(максимализм) Сверхзадача

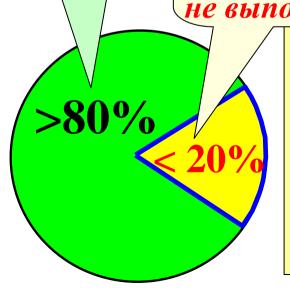
<u>xDSL|ГодностьПары|Выбор норм</u>

Нормирование в рамках сценария развертывания сети широкополосного

абонентского доступа

Нормируется не конкретная линия, но нормы на каждую устанавливаемую линию определяются для создаваемой сети

Сценарий	Тактика	Минусы	Плюсы
Минимум хлопот	Расчет на наихудший случай при любом коэффициенте уплотнения	Существенное ограничение площади зоны обслуживания — минимум абонентов	Ничего и никогда не измерять - подключил оборудование — линия должна работать
Взвешенный подход	Нормирование на основе рек. ITU-Т и планируемого коэффициента цифрового уплотнения кабеля	Проведение измерений необходимо, но только в особых случаях	Контролируемое расходование скоростного потенциала кабеля
Сверхзадача	Стремление к обеспечению скоростного потенциала линии равного скоростному потенциалу оконечного оборудования	Постоянный мониторинг сети. Работа на пределе - минимальная устойчивость	Максимальная площадь зоны обслуживания на необходимой скорости

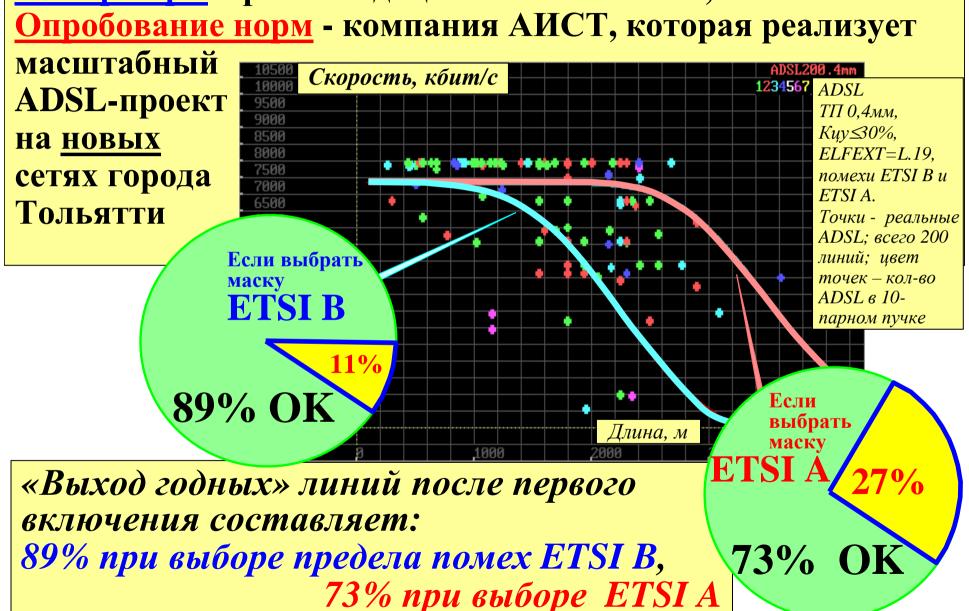

<u>xDSL|ГодностьПары|Выбор норм</u>

Минимизация измерений предполагает, что установка xDSL будет в большинстве случаев (не менее 80%) успешна без выполнения каких-либо измерительных процедур.

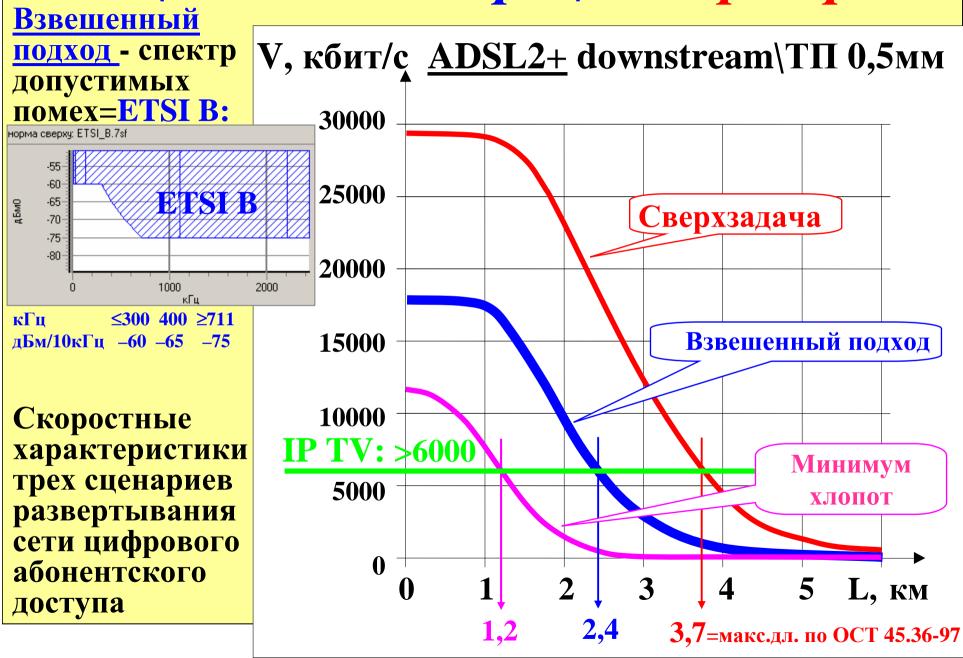
Есть норма скорости при 1-м включении линии!

Норма скорости при 1-м включении не выполнена!

В незначительном количестве случаев (до 20%) допускается несоответствие скорости xDSL номиналу – при этом характеристики кабелей должны быть измерены и принято решение о целесообразности ремонта кабеля.



Взвешенный подход=? «Выход годных» линий 80 из 100 многим экспертам представляется допустимым.


Настроить нормы на заданное соотношение можно путем выбора предельно допустимых помех, опираясь на данные установки реальных линий на реальной сети

<u>хDSL ГодностьПары Выбор норм</u>

Выбор норм – рекомендации ITU-T G.996.1, L.19.

<u>xDSL|ГодностьПары|Выбор норм</u>

xDSL\ГодностьПары\Инсталляция

Алгоритм инсталляции Каждой цифровой линии

