ООО "Аналитик-ТС"

Анализатор цифровых каналов и трактов

AnCom E-9

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

4221-015-11438828-19P3

Документ **E9re_300**

Содержание

1.	Введение	5
2.	Назначение анализатора	6
3.	Состав анализатора	7
3.1	Внешний вид и соединители	
3.1.1	Индикаторы состояния входных сигналов	
3.1.2	Соединители на верхней панели	
3.1.3	Нижняя панель	
3.2	Устройство и принцип работы	
3.3	Схемы подключения	
3.4	Средства защиты цепей анализатора по току и напряжению	
4.	·	
	Технические характеристики	44
4.1	Возможности анализатора	
4.2 4.2.1	Нормируемые характеристики средств подключения	
	Характеристики симметричных разъемов	
4.3	Нормируемые характеристики передатчика	
4.3.1 4.3.2	Частота следования битУровень выходного сигнала	
4.3.2 4.3.3	Джиттер выходного сигнала	
4.3.3 4.3.4	Задержка передачи	
4.3.4 4.4	Бадержка передачиНормируемые характеристики приемника	
4.4 4.4.1	Измеренное значение отклонения частоты	
4.4.2	Измеренное значение отклонения частоты	
4.4.3	Измеренное значение уровня входного сигнала	
4.4.4	Измеренное значение задержки	
	·	
5.	Указания по эксплуатации	
5.1	Электропитание анализатора	
5.1.1	Индикатор зарядки встроенного аккумулятора	
5.2	Подготовка к работе	
5.2.1	Включение анализатора	
5.2.2	Ориентация экрана	
5.2.3	Контроль источников питания	
5.2.4	Выключение анализатора	
5.2.5	Перезагрузка ПО	
5.3 5.3.1	Приемы работы с анализатором Ввод числовых параметров	
5.3.1 5.3.2	Управление курсорами	
5.3.3	Подпись курсора, расстояние между курсорами	
5.3.4	Масштабирование графиков	
5.3.5	Маски (шаблоны) характеристик	
5.3.6	Редактирование масок	
5.3.7	Запись результатов в архив	
5.3.8	Просмотр записей из архива	
5.3.9	Сохранение и загрузка конфигураций	
5.4	Контроль функционирования	
5.5	Формирование сигнала «Все 1» при поверке анализатора	
6.	Выполнение измерений	
o. 6.1	Главное окно	
6.1.1	Отображение состояния анализатора	
6.1.2	Кнопки оперативного управления	
6.1.3	Команды меню	
6.1.4	Контекстный справочник Help	
6.1.5	Настройка параметров экрана	
6.1.6	Информация о настройке измерительных каналов	
6.2	Передатчик и приемник потока Е1	
6.2.1	Параметры передатчика и приемника	
6.2.2	Установка S-битов FAS/NFAS	
6.2.3	Установка битов САЅ	
6.3	Передатчик и приемник испытательной последовательности	
6.4	Ввод дефектов и ошибок	
		33

6.4.2	Светодиодная индикация ошибок	34
6.4.3	Светодиодная индикация аварий	34
6.4.4	Сброс индикаторов	34
6.5	Ввод искажений и помех	
6.5.1	Ввод искажений	35
6.5.2	Формирование помехи	
6.6	Контроль содержимого КИ	
6.6.1	Просмотр КИ	
6.6.2	Контроль Sa-битов	
6.6.3	Контроль битов сигнализации CAS	
6.7	Анализ каналов ТЧ	
6.7.1	Спектр и осциллограмма сигнала ТЧ	
6.7.2	Частотные характеристики затухания и защищенности	
6.7.3	Управление встроенным динамиком	
6.8	Оценка качества передачи речи	
6.8.1	Таблица оценок качества	
6.8.2	Характеристики качества передачи речи	
	Анализ формы импульса	
	Анализ формы импульсаАнализ джиттера	
	Режимы измерений	
	Измерение ошибок	
	. Эксплуатационные измерения	
	Измерение задержки	
	Имитация задержки	
	Измерение максимально допустимого входного джиттера (MTJ)	
	б Измерение передаточной характеристики джиттера (JTF)	
7.	Сеансы измерений	54
7.1	Управление сеансами	
7.2	Отчеты о измерении показателей ошибок	
7.2.1	Формирование отчетов	55
7.2.2	Нормирование	
7.2.3	Итоговый отчет по Приказу №92	
7.3	Анализ временных диаграмм	
7.3.1	Отображение временных диаграмм	
7.3.2	Таблица текущих значений	
7.3.3	Гистограммы показателей ошибок G.821, G.826, М.2100	
7.3.4	Выбор параметров	
7.3.5	Протокол команд оператора	
7.4	Архив измерений	
7.4.1	Управление архивом	
7.4.2	Запись результатов измерений на USB Flash	
	• •	
8.	Анализ кабеля	
8.1	Измерение затухания	
8.1.1	Отображение спектра	67
8.2	Измерение уровня шума	
8.3	Измерение уровня рабочего сигнала Е1	
8.3.1	Отображение временных диаграмм	
8.4	Измерение АЧХ рабочего затухания и NEXT	72
8.4.1	Отображение АЧХ	73
8.5	Рефлектометр	74
8.5.1	Отображение рефлектограмм	75
9.	Сервисные функции	78
9.1	Сведения об анализаторе	
9.1		
-	Системный сервис	
9.2.1	Выключение подсветки экрана	
9.2.2	Контроль наличия свободной памяти	
10.	E-9 Commander	80
10.1	Главное окно	80
10.1.1	Настройка параметров экрана	81
10.1.2	Контекстный Help	
	Ввод измерений в архив ПК	
	Соединение по USB	
10.2.2	Соединение по локальной сети или через Internet	82
	\cdot	

10.3	Управление архивом ПК	83
10.4	Печать и вывод в файл результатов измерений	84
10.4.1	Заголовки и подписи для печати	84
	Комплексный отчет	
10.4.3	Отчет о измерении показателей ошибок	84
10.4.4	Временные диаграммы, таблица измерений	85
	Анализ каналов ТЧ, оценки качества передачи речи	
	Анализ формы импульса	
	Анализ джиттера	
	Характеристика MTJ	
10.4.9	Характеристика JTF	89
	ОПараметры настройки анализатора	
	1Анализ кабеля: АЧХ	
	2Анализ кабеля: Спектр	
10.4.1		92
	Просмотр и редактирование отчетных файлов	
11.	транспортирование, хранение, консервация	
11.1	Транспортирование и хранение	
11.2	Консервация	
11.3	Расконсервация	
	• •	
12.	Техническое обслуживание, ремонт	
13.	Поверка	93
14.	Модернизация	94
14.1	Модернизация встроенного программного обеспечения не влияющего на	
	метрологические характеристики	94
14.2	Установка и обновление программы E-9 Commander	94
	10жения	
	ожение 1. Критерии установки и сброса аварийных сигналов	
	ожение 1. критерии установки и сороса аварийных сигналов ожение 2. Способы формирования аварийных ситуаций	
	ожение 2. Спосооы формирования аварийных ситуацииом ожение 3. Измеряемые параметры сигнала 2048 кбит/с	
	ожение 3. измеряемые параметры сигнала 2046 коит/сожение 4. Измеряемые показатели ошибок	
прил	ожение 5. Маска импульса G.703 для интерфейса 2048 кбит/с ожение 6. Параметры негармонических сигналов TЧ, формируемых анализатором	90
	ожение 7. Параметры сигналов ТЧ, определяемые анализатором	
	ожение 8. Оценка качества передачи речи (Р.862)	
	ожение 9. Эталонные фрагменты речи в формате .WAV	
	ожение 10. Структура сверхцикла CRC-4 (ИКМ30C, ИКМ31C)	
	ожение 11. Структура сверхцикла CAS (ИКМ30С, ИКМ30)	
	ожение 12. Шаблон максимально допустимого входного джиттератера	
	ожение 13. Шаблоны передаточной характеристики джиттера	
Прил	ожение 14. Итоговый отчет о измерении показателей ошибокбы отчет о измерении показателей ошибок	104

1. Введение

Руководство по эксплуатации предназначено для изучения устройства, технических возможностей и правил эксплуатации анализатора цифровых каналов и трактов AnCom E-9.

В руководстве используются следующие сокращения и условные обозначения:

ЕИ - единичный (тактовый) интервал;

ИКМ - импульсно-кодовая модуляция;

КИ - канальный (временной) интервал;

Кош - коэффициент ошибок;

МСЭ-Т - Международный союз электросвязи;

ПК - персональный компьютер под управлением Windows;

ПСП - псевдослучайная последовательность;

СК - сигнальный канал;

СЦ - сверхцикл;

ТЧ - тональная частота;

CAS - сигнализация по выделенному каналу (Channel-assosiated signaling);

CRC - циклический контроль ошибок (Cyclic Redundancy Check);

FAS - цикловый синхросигнал (Frame Alignment Signal);

NFAS - сигнал отсутствие циклового синхросигнала (No Frame Alignment Signal);

MFAS - сверхцикловый синхросигнал (Multiframe Alignment Signal);

AIS - Сигнал индикации аварийного состояния (Alarm Indication Signal)

LOF - Потеря цикловой синхронизации (Loss of Frame Alignment)

LOM - Потеря сверхцикловой синхронизации (Loss of Multiframe Alignment)

LOS - Отсутствие сигнала на входе приемника (Loss Of Signal)

RAI - Сигнал индикации потери цикловой синхронизации (Remote Alarm Indication)

MRAI - Сигнал индикации потери сверхцикл. синхронизации (Multiframe Remote Alarm Indication)

PL - Потеря синхронизации приемником испытательной последовательности (Pattern Loss)

AS - Период готовности (Available Second)

US - Период неготовности (Unavailable Second)

ES - Секунды с ошибками (Errored Second)

ESR - Коэффициент ошибок по секундам (Errored Second Ratio)

SES - Секунды, пораженные ошибками (Severely Errored Second)

SESR - Коэффициент ошибок по секундам, пораженным ошибками (Severely Errored Second Ratio)

BBE - Блок с фоновой ошибкой (Background Block Error)

BBER - Коэффициент фоновых ошибок по блокам (Background Block Error Ratio)

BER - Коэффициент ошибок по битам (Bit Error Ratio)

JTF - Передаточная характеристика джиттера (Jitter Transfer Function)

MTJ - Максимально допустимый джиттер (Maximum Tolerable Jitter)

DTMF - двухтональный многочастотный сигнал (Dual-Tone Multi-Frequency)

2. Назначение анализатора

Анализатор цифровых каналов и трактов AnCom E-9 (далее – анализатор) предназначен для измерения параметров цифровых каналов и трактов со скоростью передачи 2048 кбит/с. Анализатор может применяться при вводе в эксплуатацию, техническом обслуживании, поиске и устранении неисправностей оборудования связи, имеющего стык ${\rm E12}^1$ в соответствии с рекомендацией MCЭ-T G.703. Обеспечивается выполнение измерений с перерывом связи, без перерыва связи и в режиме транзита.

Анализатор изготавливается и поставляется в вариантах исполнения, различающихся следующими возможностями, описанными в соответствующих частях руководства по эксплуатации (РЭ):

Анализатор цифровых каналов и трактов AnCom E-9 выполнен на базе платформы AnCom C9 со встроенным вычислительным модулем. Работа в автономном режиме. Обмен данными с ПК. Питание от источника питания и встроенных аккумуляторов. Динамик и микрофон. ЖКИ с

Touch-Screen. Интерфейсы: USB host, USB slave, RS-232C, Ethernet 10/100 МГц.

Touch-Screen. VIHTE		, USB sia	ve, RS-232C, Etnernet 10/100 MI Ц.	1
Возможности анализатора	Позиция в обозначении варианта исполнения	Значение позиции и описание возможностей		Примеч.
Φ×			Два канала Е1 с возможностью внешней	
Функциональный	C//L	C=1	синхронизации, узел формирования и	-
состав			измерения аналоговых сигналов (до 35 МГц)	
		D=0	Модуль расширения не установлен	Д.
Функциональный	-D-//-	D=1	Резерв для дальнейшего использования	OTC
состав	-Б-//-	D=2	Резерв для дальнейшего использования	Ba
		D=4	Резерв для дальнейшего использования	376
Резерв	E//-	E=0	Резерв для дальнейшего использования] 🖔
		F=0	Нет взаимодействия с удаленным анализатором	ИЙ
_		F-0	и измерений в автоматическом режиме	ЗИЦ
Режимы измерений	/F/-	F=1	Резерв для дальнейшего использования	ы Б
измерении		F=2	Резерв для дальнейшего использования	ениз
		F=4	Резерв для дальнейшего использования	Ha4
Поддерживаемые функции		G=0	Базовые функции: измерение показателей ошибок, задержки, джиттера, анализ формы импульса, гистограммы и хронограммы, осциллограф, совместимость с AnCom TDA-5 при формировании и измерении сигналов ТЧ в заданном КИ. Стресс-тестирование: ввод ошибок, отклонения тактовой частоты, джиттера, аддитивной помехи.	Три заказе анализатора с комбинированными возможностями значения позиций складываются
		G=1	Определение параметров кабелей: затухание, защищенность, частотная характеристика затухания, частотная характеристика защищенности, построение рефлектограммы, анализатор спектра Резерв для дальнейшего использования	атора с комбинир
		G=4	Резерв для дальнейшего использования	1133
Резерв	/H-/-	H=0	H=0 Резерв для дальнейшего использования	
. сосрь	,,	I=0	Только обязательные позиции	3e 8
Вариант		I=1	Резерв для дальнейшего использования	aga⊢
комплектации	/I/-	I=2	Резерв для дальнейшего использования	ĪΞ
компониции		I=4	Резерв для дальнейшего использования	⊣բ
		L=B	Локализация для Республики Беларусь	-
Код локализации	/L	ם	Допустимые значения: отсутствует, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f.	

Пример записи обозначения анализатора: "Анализатор AnCom E-9/100/0100".

AnCom E-9

-

¹ Общеупотребительное обозначение в технической литературе - Е1.

3. Состав анализатора

3.1 Внешний вид и соединители

Внешний вид анализатора с вертикальной ориентацией экрана представлен на рисунке:

Кнопка включения «♠», светодиоды READY, POWER, Индикаторы состояния входных сигналов расположены на лицевой панели.

Светодиод **READY** обеспечивает индикацию готовности анализатора к измерениям:

- Не горит: измерительный модуль выключен, анализатор не готов к выполнению измерений;
- Зеленый: измерительный модуль включен, анализатор готов к выполнению измерений.

Светодиод **POWER** и кнопка **«Питание»** в нижней строке сенсорного экрана обеспечивают индикацию состояния аккумуляторов в соответствии с описанием в разделе 5.1.1, 5.2.3.

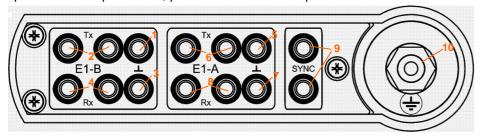
Ориентация экрана может быть программно изменена на горизонтальную в соответствии с описанием в разделе 5.2.2, при этом анализатор может быть установлен на откидной кронштейн блока питания с целью использования в настольном варианте.

Управление анализатором осуществляется с помощью стилуса и сенсорного экрана, возможно подключение «мыши».

3.1.1 Индикаторы состояния входных сигналов

Блок индикаторов обеспечивает индикацию состояния входных сигналов Е1-А и Е1-В:

Обозначение индикатора	Состояние входного сигнала
LOS	Отсутствие сигнала на входе приемника
AIS	Сигнал индикации аварийного состояния (все "1")
LOF	Потеря цикловой синхронизации
LOM	Потеря сверхцикловой синхронизации CAS (LOM CAS)
CRC	Потеря сверхцикловой синхронизации CRC-4 (LOM CRC)
RAI	Сигнал индикации потери цикловой синхронизации
MRA	Сигнал индикации потери сверхцикловой синхронизации
ERR	Обнаружена ошибка или превышение порога ошибок
PL	Потеря синхронизации приемником испытательной последовательности


Цвет индикатора соответствует состоянию входного сигнала:

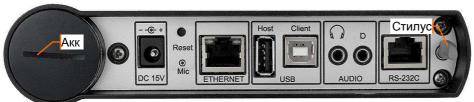
цвет индикатора соответствует состоянию входного сигнала.		
Цвет индикатора	Состояние входного сигнала	
Зеленый	Аварийная ситуация или ошибка не была обнаружена с момента включения или сброса индикаторов	
Красный	Аварийная ситуация или ошибка обнаружена в данный момент	
Оранжевый	Аварийная ситуация или ошибка отсутствует в данный момент, но была обнаружена ранее	
Не горит ¹	Аварийная ситуация не может быть обнаружена	

¹ Все индикаторы, соответствующие измерительному каналу А или В не горят, если канал выключен.

3.1.2 Соединители на верхней панели

Подключение анализатора к объекту измерений производится посредством симметричных трехполюсных разъемов, расположенных на верхней панели:

Назначение разъемов представлено в таблице:


Номер на рисунке	Назначение разъема
1	Средняя точка выхода передатчика потока Е1 канал В
2	Выход передатчика потока Е1 канал В
3	Средняя точка входа приемника потока Е1 канал В
4	Вход приемника потока Е1 канал В
5	Средняя точка выхода передатчика потока Е1 канал А
6	Выход передатчика потока Е1 канал А
7	Средняя точка входа приемника потока Е1 канал А
8	Вход приемника потока Е1 канал А
9	Сигнал синхронизации передачи
10	Защитное заземление

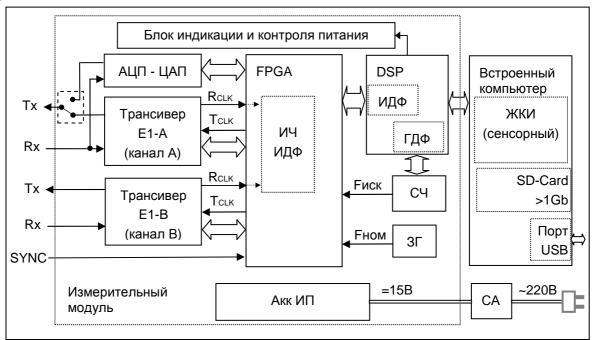
Для подключения используются следующие соединительные кабели и принадлежности.

Наименов.	Обозн.	Внешний вид	Примечания
Кабель измери- тельный (4 шт)	КИ13		Красные «бананы» позволяют подключить ■■ Тх или ■■ Rх анализатора к объекту. Черный «банан» позволяет подключить ■ анализатора к
Клипсы (4 шт)	-		подключить — анализатора к общей точке объекта. Клипсы надеваются на красные «бананы» КИ13 и обеспечивают подключение к сигнальным окончаниям объекта.
Крокодил (4 шт)	-		Крокодил надевается на черный «банан» КИ13 и обеспечивает подключение к общей точке измеряемого объекта.
Кабель USB A-B	-		Подключение ПК к разъему анализатора USB Client

3.1.3 Нижняя панель

Подключение сетевого адаптера, «мыши», персонального компьютера и телефонной гарнитуры производится посредством разъемов, расположенных на нижней панели:

Сетевой адаптер включается в сеть переменного напряжения 220В/50Гц и в гнездо **DC 15V**. «Мышь» или USB Flash подключается к разъему **USB Host**.


Персональный компьютер подключается к разъему USB Client.

Наушники и микрофон телефонной гарнитуры подключаются к разъемам **AUDIO**.

Блок аккумуляторов может быть извлечен из корпуса анализатора после отвинчивания крышки Θ .

3.2 Устройство и принцип работы

Функциональные узлы анализатора и их взаимодействие представлены на структурной схеме.

Структурная схема анализатора AnCom E-9

Анализатор состоит из: двух приемо-передатчиков E1 (трансивер E1-A, трансивер E1-B); блока аналогового ввода-вывода (АЦП-ЦАП); программируемой логической интегральной микросхемы (FPGA); цифрового сигнального процессора (DSP); цифрового синтезатора частоты (СЧ); задающего генератора (ЗГ); блока индикации и контроля источников питания; встроенного компьютера.

Трансиверы Е1-A, Е1-B обеспечивают формирование сигналов Е1 в коде АМІ или HDB-3 по измерительным каналам A и B, формирование цикловой структуры и псевдослучайных испытательных последовательностей согласно рекомендациям МСЭ-Т G.703, G.704, O.150, а также ввод дефектов и калиброванных ошибок в выходной сигнал.

FPGA обеспечивает коммутацию сигналов, выработку тактовой сетки, регистры обмена, счетчики измерителя частоты (ИЧ) и измерителя дрожания фазы (ИДФ). В зависимости от выбранных источников тактовой частоты в FPGA формируются сигналы синхронизации T_{CLK} для передатчиков E1-A и E1-B

ЗГ формирует тактовую частоту Fном для формирования сигнала с номинальной частотой следования бит 2048000 Гц.

СЧ формирует тактовую частоту Fuck с заданными характеристиками фазового дрожания и отклонением от номинального значения. Генерацию синусоидально-модулированного фазового дрожания обеспечивает ГДФ в DSP.

ЦАП обеспечивает совместно с DSP формирование сигнала помехи при выключенном передатчике потока E1 в канале A.

АЦП с частотой отсчетов 81.92МГц используется при анализе формы импульса сигнала Е1.

В режиме измерения каналов тональной частоты DSP обеспечивает формирование сигнала ТЧ, кодированного согласно рек. МСЭ-Т G.711 (А-закон) для заполнения произвольного набора КИ передачи.

Трансиверы E1-A и E1-B обеспечивают прием сигналов E1 по каналам A и B, выделение тактовой частоты Rclk, анализ испытательных последовательностей, обнаружение дефектов и ошибок. Сигналы выделенной тактовой частоты поступают на ИЧ и ИФД FPGA. Массив данных для построения спектральной характеристики фазового дрожания формируется в ИФД DSP.

Результаты измерений группируются в DSP по секундным интервалам и передаются во встроенный компьютер.

Встроенный компьютер с операционной системой Windows CE обеспечивает:

- графический интерфейс взаимодействия с оператором на базе цветного сенсорного экрана;
- включение измерительного модуля, загрузку логической матрицы FPGA и программы DSP;
- передачу команд в измерительный модуль;
- прием первичных результатов измерений;
- вторичную обработку результатов измерений в соответствии с рекомендациями МСЭ-Т G.821, G.826, M.2100;
- оперативное представление результатов измерений на экране;
- формирование отчетов;
- накопление результатов измерений в долговременной памяти на SD-Card;
- обмен данными с персональным компьютером по USB-интерфейсу.

Блок индикации и контроля источников питания обеспечивает:

- светодиодную индикацию состояния входных сигналов;
- контроль и светодиодную индикацию состояния источников питания.

Аккумуляторный источник питания (Акк ИП) постоянного тока обеспечивает питанием все узлы анализатора. Зарядка аккумуляторов осуществляется от сети переменного тока с номинальным напряжением равным 220 В посредством сетевого адаптера (СА).

3.3 Схемы подключения

Анализатор подключается к объекту измерений с помощью симметричных трехполюсных разъемов. Схемы подключения анализатора к проверяемому оборудованию представлены в таблице:

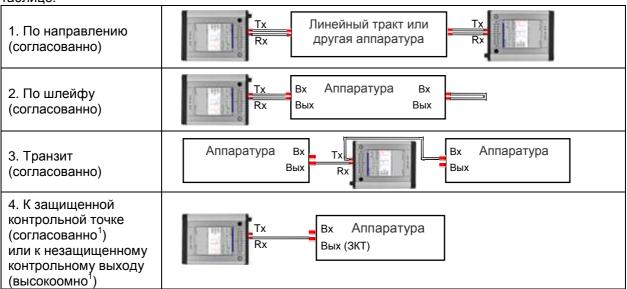


Таблица содержит варианты подключения одного измерительного канала (A или B). Второй канал может быть подключен по любой из приведенных схем, независимо от первого или может быть выключен.

3.4 Средства защиты цепей анализатора по току и напряжению

Для всех описанных выше схем подключения анализатора обеспечивается защита цепей анализатора по напряжению (в т.ч. от электростатических разрядов) и по току. Средства оперативного отображения фактов срабатывания схем защиты не предусмотрены. Обеспечивается полное восстановление характеристик анализатора после срабатывания средств защиты и при условии отсутствия внешнего воздействия, которое привело к их срабатыванию.

10 AnCom E-9

¹ Должно быть задано дополнительное усиление входного сигнала.

4. Технические характеристики

4.1 Возможности анализатора

В каждом канале обеспечиваются следующие режимы включения передатчика и приемника:

Обозначение	Режим включения	Примечание
Терминал	Режим оконечного устройства	-
Прием	Режим контроля	Передатчик выключен, только прием
Транзит	Режим транзита входного сигнала с переформированием FAS/NFAS, MFAS и CRC-4	Обеспечивается возможность замены данных в КИ и битов CAS в КИ16 (Drop & Insert)

Передатчик каждого канала может тактироваться от следующих источников:

- 1 - 1 -	11 119 1
Обозначение	Сигнал тактирования передатчика
Внутр.	От внутреннего генератора
SYNC	От внешнего синхросигнала 2048 кГц на входе SYNC
Rx A	От синхросигнала, выделенного приемником Е1 канала А
Rx B	От синхросигнала, выделенного приемником Е1 канала В

При пропадании внешнего синхросигнала происходит временное переключение передатчика на сигнал тактирования от внутреннего генератора.

Способ линейного кодирования при формировании и анализе измерительных сигналов: HDB-3 или AMI.

Обеспечивается возможность высокоомного подключения приемника к незащищенным контрольным выходам аппаратуры.

Обеспечивается дополнительное усиление входного сигнала на величину 20дБ, 26дБ, 32дБ для компенсации затухания при высокоомном или согласованном подключении.

Обеспечивается компенсация затухания входного сигнала и выравнивание АЧХ с помощью входного эквалайзера. Диапазон допустимых затуханий: от 0 до минус 12 дБ в режиме подключения по короткой линии или от 0 до 43 дБ в режиме подключения по длинной линии.

Обеспечивается формирование и анализ сигналов, соответствующих рекомендации МСЭ-Т G.703 на скорости 2048 кбит/с со следующей структурой:

Обозначение	Структура сигнала 2048 кбит/с	
HECTP	Неструктурированный сигнал	
ИКМ31	Сигнал с цикловой структурой по рек. МСЭ-Т G.704	
ИКМ31С	Сигнал с цикловой структурой по рек. МСЭ-Т G.704 с CRC-4	
ИКМ30	Сигнал с цикловой структурой по рек. МСЭ-Т G.704 с CAS в КИ16	
ИКМ30С Сигнал с цикловой структурой по рек. МСЭ-Т G.704 с CAS в КИ16 и С		

Обеспечивается формирование и анализ следующих типов испытательных последовательностей:

послодовательно		
Обозначение	Тип испытательной последовательности ПСП длиной 127 бит	
2^7 -1		
2^9 -1	ПСП длиной 511 бит	
2^11 -1	ПСП длиной 2047 бит	
2^15 -1	ПСП длиной 32767 бит	
2^20 -1	ПСП длиной 1048575 бит с количеством последовательных нулей не более 14	
55h Модиф.	Повторяющиеся октеты 55hex и участки высокой и низкой плотности единиц	
Прогр.	Программируемая последовательность длиной от 17 до 32 бит	
Альт.	Программируемая последовательность двух слов по 16 бит, каждое слово повторяется от 2 до 255 раз	

¹ Способ кодирования, структура сигнала, тип испытательной последовательности устанавливаются одновременно для передатчика и приемника в одном измерительном канале.

AnCom E-9 11

Испытательная последовательность может быть сформирована в виде неструктурированного сигнала или введена в произвольный набор КИ сигнала с цикловой структурой. Возможна инверсия битов испытательной последовательности при передаче и/или приеме.

Обеспечивается обнаружение следующих аварийных ситуаций (дефектов) и формирование

следующих аварийных сигналов:

Обозначение	Аварийная ситуация	
LOS	Отсутствие сигнала на входе приемника	
AIS	Сигнал индикации аварийного состояния (все "1")	
LOF	Потеря цикловой синхронизации	
LOM CAS	Потеря сверхцикловой синхронизации CAS	
LOM CRC	Потеря сверхцикловой синхронизации CRC-4	
RAI	Сигнал индикации потери цикловой синхронизации	
MRAI	Сигнал индикации потери сверхцикловой синхронизации Потеря синхронизации приемником испытательной последовательности	
PL		

Критерии установки и сброса аварийных сигналов представлены в Приложении 1. Способы формирования аварийных ситуаций с целью имитации неисправностей содержит Приложение 2.

Обеспечивается подсчет количества ошибок, вычисление коэффициентов ощибок за

установленный период времени и ввод в измерительный сигнал следующих видов ошибок¹:

Вид ошибки	Критерий обнаружения	Диапазон Кош при вводе
Битов	Несоответствие принятого и переданного бита испытательной последовательности ²	
Кода	AMI: два последовательных импульса одной полярности HDB-3: два последовательных нарушения одной полярности	10 ⁻³ ÷10 ⁻⁸
FAS	-AS Одна и более ошибка в цикловом синхросигнале FAS	
MFAS Одна и более ошибка в сверхцикловом синхросигна		10 ⁻¹ ÷10 ⁻⁸
CRC4	RC4 Ошибка процедуры CRC-4	
E-bit Ошибка процедуры CRC-4 на дальней стороне		$10^{-1} \div 10^{-8}$

Обеспечивается обнаружение проскальзывания входного сигнала относительно синхросигнала на входе SYNC или RxA.

Проскальзывание входного сигнала в битах может иметь значение от -255 до 255; при достижении значения -256 или 256 текущее проскальзывание в битах обнуляется и увеличивается счетчик повторений (Цикл+) или пропусков цикла (Цикл-):

Обозначение	Вид проскальзывания	Примечание	
Цикл+ Повторение цикла		Скорость приема ниже скорости синхросигнала	
Цикл-	Пропуск цикла	Скорость приема выше скорости синхросигнала	

Анализатор производит подсчет обнаруженных дефектов и ошибок по секундным интервалам и определяет показатели ошибок за установленный период времени в соответствии с рекомендациями МСЭ-Т и требованиями приказа Минсвязи РФ №92 от 10 08 96г

рекомендациями г	иями №СЭ-т и треоованиями приказа минсвязи РФ №92 от то.ов.эег.	
Обозначение	Показатель ошибок	
ES	Секунды с ошибками	
ESR Коэффициент ошибок по секундам		
SES	Секунды, пораженные ошибками	
SESR	Коэффициент ошибок по секундам, пораженным ошибками	
BBE	Блоки с фоновыми ошибками: блоки с ошибками, не являющиеся частью SES	
BBER	Коэффициент ошибок по блокам: отношение числа ВВЕ к общему количеству блоков в период готовности, за исключением блоков, являющихся частью SES	
AS	Период готовности (секунды готовности)	
ASR	ASR Отношение периода готовности к продолжительности измерений US Период неготовности (секунды неготовности)	
US		
USR	Отношение периода неготовности к общей продолжительности измерений	

¹ Обеспечивается ручной ввод и автоматический ввод с заданным коэффициентом ошибок (*Кош*).

12 AnCom E-9

² Подсчет битовых ошибок не производится в состоянии потери входной последовательности.

Показатели ошибок ES, SES, BBE, ESR, SESR, BBER определяются за период готовности. Список измеряемых параметров сигнала 2048 кбит/с содержится в Приложении 3. Список показателей ошибок содержится в Приложении 4.

Обеспечивается заполнение КИ, свободных от передачи испытательной последовательности, сигналом тональной частоты (ТЧ), эталонным речевым сигналом или сигналом от встроенного микрофона:

Обозначение	Тип сигнала ТЧ	
Sin	Гармонический сигнал с частотой от 300 до 3400 Гц.	
OIII	Уровень сигнала от 0 до -60 дБм0	
Cin O	Двухчастотный сигнал с частотами гармонических сигналов от 300 до 3400 Гц.	
Sin2	Уровень сигнала от -3 до -60 дБм0	
0.404	Псевдослучайный сигнал согласно рекомендации МСЭ-Т О.131	
O.131	Уровень сигнала от -10 до -60 дБм0	
MUIC	Многочастотный сигнал с частотами гармонических сигналов 100,200,,3800 Гц	
МЧС	Уровень сигнала от -10 до -60 дБм0	
Шум	Псевдошумовой сигнал в полосе частот от 0 до 4000 Гц.	
	Уровень сигнала от -20 до -60 дБм0	
Мик.	Голосовой сигнал от встроенного динамика	

Кодирование сигналов ТЧ выполняется согласно рек. МСЭ-Т G.711 (А-закон). Во всех КИ одного цикла передается одно и то же кодовое значение сигнала.

Обеспечивается анализ сигнала ТЧ в заданном КИ. Список определяемых параметров сигнала ТЧ содержится в Приложении 7.

Обеспечивается воспроизведение сигнала, принятого в заданном КИ, с помощью встроенного динамика.

Обеспечиваются следующие возможности формирования структуры измерительного сигнала:

- заполнение КИ, свободных от передачи испытательной последовательности и сигналов ТЧ программируемым 8-битовым кодом;
- автоматическое формирование сигнала индикации неисправности AIS или RAI при обнаружении дефектов LOS, AIS, LOF во входном сигнале;
- программирование S-битов FAS/NFAS в КИО:
- программирование битов CAS в КИ16.

Обеспечиваются следующие возможности просмотра структуры измерительного сигнала и просмотра данных в КИ:

- просмотр текущих значений FAS/NFAS в КИО и сохраненных значений КИО в течение 8000 циклов (1 c);
- просмотр текущих значений битов сигнализации в КИ16 и сохраненных значений КИ16 в течение 500 сверхциклов CAS (1 c);
- просмотр текущих значений во всех КИ и сохраненных значений всех КИ в течение 250 циклов (31.25 мс).

Обеспечивается ввод отклонения частоты от номинального значения и ввод синусоидальномодулированного джиттера в выходной сигнал, если используется режим тактирования передатчика от внутреннего генератора.

Обеспечивается измерение отклонения частоты следования бит входного сигнала от номинального значения 2048000 Гц и измерение уровня входного сигнала.

Обеспечивается измерение размаха фазового дрожания на выходе полосовых фильтров с частотами среза: 20 Гц и 100 кГц (ПФ1), 18 кГц и 100 кГц (ПФ2).

Обеспечивается измерение задержки распространения формируемых анализатором испытательных последовательностей. Измерение задержки производится в одном канале (А или В) в режиме "Терминал" по шлейфу на удаленной стороне (схема подключения 2). Подсчет количества ошибок при измерении задержки не производится.

Обеспечивается задержка передачи измерительного сигнала, поступающего на вход анализатора и синхронно воспроизводимого на выходе. Формирование задержки производится в одном канале (А или В) в режиме "Транзит", "НЕСТР" (схема подключения 3). Подсчет количества ошибок и измерение джиттера при формировании задержки не производится.

Обеспечивается проверка соответствия формы импульсов входного сигнала в канале А маске импульса, содержащейся в рекомендации МСЭ-Т G.703 п.9.2;

Обеспечивается формирование гармонической или импульсной помехи на выходе канала A, при условии выключения передатчика потока E1 в канале A. Гармоническая помеха частотой 2048.0 кГц может использоваться в качестве внешнего синхросигнала SYNC.

Обеспечивается индикация обнаруженных ошибок и аварийных ситуаций с помощью блока индикаторов на лицевой панели анализатора.

Анализатор обеспечивает следующие возможности управления сеансами измерений:

- сеанс измерений может быть начат:
 - о в ручном режиме, нажатием кнопки Сеанс;
 - о автоматически, по достижению заданного времени начала измерений.
- сеанс измерений может быть прекращен:
 - о в ручном режиме, нажатием кнопки Сеанс;
 - о автоматически, по достижению заданной продолжительности измерений.

Обеспечивается сохранение в архиве на SD-Card всех параметров настройки анализатора и результатов сеанса измерений за период не более 45 суток и просмотр результатов измерений с интервалом от 1 с до 24 ч.

Результаты сеанса измерений сохраняются с интервалом 1 с, за исключением параметров каналов ТЧ, формы импульса, спектра джиттера, которые сохраняются в произвольные моменты времени по команде оператора.

Анализатор обеспечивает представление результатов сеанса измерений в графической и табличной формах и, сопоставляя результаты с задаваемыми нормам, определяет факт соответствия. Нормирование и контроль параметров производятся в соответствии с требованиями приказа Минсвязи РФ №92 от 10.08.96г "Нормы на электрические параметры основных цифровых каналов и трактов магистральной и внутризоновых первичных сетей ВСС России" (Приказ № 92).

Обеспечивается передача результатов в персональный компьютер (ПК) с целью долговременного хранения, визуализации на экране ПК и печати.

Анализатор имеет возможность модернизации способом загрузки новых версий встроенного программного обеспечения (ВПО).

4.2 Нормируемые характеристики средств подключения

Для подключения к объектам измерений анализатор оснащен симметричными трехполюсными разъемами.

4.2.1 Характеристики симметричных разъемов

н.г.т характеристики симметричных развемов				
05	Наименование разъема	Входное сопротивлению измерительных разъемов анализатора при согласованном подключении		
Обозначение разъема		Частота, кГц	Затухание отражения при номинальном сопротивлении 120 Ом не менее, дБ	
E1-A Tx	Trainasibi 7 (II B	51102	6	
E1-B Tx		1023072	8	
E4 4 B	Каналы А и В –	51102	12	
E1-A Rx E1-B Rx	вход приемника	1022048	18	
	согласованно ²	20483072	14	
SYNC	Синхронизация – вход приемника	2048	18	

Обозначение разъема	Наименование разъема	Входное сопротивлению измерительных разъемов анализатора при высокоомном подключении	
		Частота, кГц	Полное сопротивление не менее, Ом
E4 4 D	Каналы А и В – вход приемника высокоомно	51102	200
E1-A Rx E1-B Rx		1022048	500
2.5.0		20483072	400

14 AnCom E-9

4

¹ В соответствии с п.9.2 рек. МСЭ-Т G.703/11/2001

² В соответствии с п.9.3 рек. МСЭ-Т G.703/11/2001

4.3 Нормируемые характеристики передатчика

Характеристики передатчика формулируются как требования к параметрам формируемых анализатором испытательных последовательностей.

4.3.1 Частота следования бит

Частота следования бит формируемых испытательных последовательностей соответствует следующим требованиям:

Наименование параметра	Значение
Номинальное значение тактовой частоты при работе от внутреннего задающего генератора, Гц	2048000
Пределы допускаемой относительной погрешности тактовой частоты при работе от внутреннего задающего генератора	±8,0·10 ⁻⁶
Возможное вводимое отклонение частоты внутреннего задающего генератора от номинального значения, Гц	-15001500

4.3.2 Уровень выходного сигнала

Уровень выходного сигнала формируемых испытательных последовательностей соответствует следующим требованиям:

Наименование параметра	Значение параметра
Параметры импульсов выходного тестового сигнала:	
амплитуда, В	3,0±0,3
длительность, нс	244±25

4.3.3 Джиттер выходного сигнала

Джиттер формируемых анализатором испытательных последовательностей соответствует следующим требованиям:

Наименов.	Диапазон значений в зависимости от частоты		Допустимая
Параметра	Частота джиттера, Гц	Размах джиттера, ЕИ	погрешность
	201000	0,110	
	3000	0,17	±(0,05·D ⁾ +0,01) где D
Джиттер ¹	10000	0,13	амплитуда фазового
	1800075000	0,10,5	дрожания
	75000100000	0,10,36	

4.3.4 Задержка передачи

Задержка передачи испытательной битовой последовательности, поступающей на вход анализатора и синхронно воспроизводимой им на выходе, соответствует следующим требованиям:

Наименование параметра	Шаг задания	Диапазон значений	Допустимая погрешность
Задержка передачи, мс	1	1250	+/-0,1

AnCom E-9 15

¹ В соответствии с п.7.2 рек. МСЭ-Т О.171/04/1997 верхняя граница диапазона размаха формируемого джиттера должна составлять не менее 10 ЕИ на частотах джиттера ниже 900 Гц, 0,5 ЕИ на частотах выше 18000 Гц и уменьшаться от 10 ЕИ до 0,5 ЕИ при линейной интерполяции по логарифму частоты в диапазоне 900...18000 Гц. Частота 1000 Гц является частотой калибровки. Размах джиттера измеряется в Единичных тактовых Интервалах (ЕИ), соответствующих длительности такта частоты 2048 кГц.

4.4 Нормируемые характеристики приемника

Характеристики приемника формулируются как требования к измеряемым параметрам принимаемых анализатором испытательных последовательностей.

4.4.1 Измеренное значение отклонения частоты

Измеренное значение отклонения частоты следования бит от номинального значения следования бит формируемого выходного сигнала соответствует следующим частоты

требованиям:

Наименование параметра	Измерительный диапазон	Допустимая погрешность
Отклонение частоты следования бит, Гц	-15001500	+/-5

4.4.2 Измеренное значение уровня входного сигнала

Значение уровня входного сигнала, измеренное относительного номинального значения

уровня сигнала формируемых последовательностей соответствует следующим требованиям:

Наименование параметра	Измерительный диапазон	Допустимая погрешность
Уровень входного сигнала относительно номинального, дБ	-400	+/-2,5

4.4.3 Измеренное значение джиттера

Измеренное значение джиттера в зависимости от диапазона частот соответствует

следующим требованиям:

Наимен.	Измерительный диапазон в зависимости от диапазона частот		Допустимая	Дополнительные условия	
параметра	Диапазон частот, Гц	Измерит. диапазон, ЕИ	погрешность	Измерение в диапазоне 20Гц100кГц	Измерение в диапазоне 18кГц100кГц
Джиттер ¹ 18	20900	0,110	,	Затухание	-
	1800075000	0,10,5	$\pm (0,05 \cdot D^{0} + 0,1)$ где D амплитуда фазового	3 дБ на частоте 20 Гц	Затухание 3 дБ на частоте 18 кГц
	75000100000	0,10,36	дрожания	,) дБ на частоте)0 кГц

4.4.4 Измеренное значение задержки

Измеренное значение задержки распространения формируемых анализатором битовых

поспеловательностей соответствует спелующим требованиям:

последовательностей соответствует следующим треоованиям.			
Наименование параметра	Измерительный диапазон	Допустимая погрешность	
	11×10 ³	не нормируется	
Задержка, мкс	1×10 ³ 2000×10 ³	+/-0,5×10 ³	
	2000×10 ³ 10000×10 ³	не нормируется	

В соответствии с п.8.3 и п.8.4 МСЭ-Т О.171/04/1997

5. Указания по эксплуатации

5.1 Электропитание анализатора

Электропитание анализатора обеспечивается от встроенного аккумуляторного источника питания постоянного тока или комплектного сетевого адаптера с номинальным выходным напряжением 12...25 В. Сетевой адаптер должен подключаться к сети питания переменного тока с напряжением 187...242 В, частотой (50±2,5) Гц при коэффициенте нелинейных искажений не более 10%. Мощность, потребляемая от сети переменного тока сетевым адаптером с подключенным анализатором в рабочем состоянии, не должна превышать 22 ВА.

Анализатор характеризуется следующими временными параметрами работы от встроенного аккумуляторного источника питания:

Состояние анализатора	Длительность режима
Зарядка: адаптер подключен, анализатор выключен	Не более 4-х часов
Рабочее: адаптер отключен, измерение ошибок по двум каналам	Не менее 4-х часов
анализ кабеля: затухание	Не менее 3-х часов

Внимание! Для обеспечения требований электробезопасности и электромагнитной совместимости сетевой адаптер должен подключаться к сети питания только с применением трехполюсной розетки, провод заземления которой действительно должен быть заземлен.

5.1.1 Индикатор зарядки встроенного аккумулятора

Состояние зарядки встроенного аккумулятора отображает светодиодный индикатор **POWER**:

Обозначение индикатора	Цвет	Состояние встроенного аккумулятора	
Opal Opal Opal Sene Roac Sene Kpac	Оранжевый мигает	Сетевой адаптер подключен	Выполняется зарядка аккумулятора
	Оранжевый		Зарядка завершена, аккумулятор полностью заряжен
	Оранжевый/Красный		Зарядка выключена при выполнении аналоговых измерений
	Зеленый/ <mark>Красный</mark>		Полная разрядка – необходима полная зарядка в течение 4 часов.
	Красный		Зарядка остановлена (перегрев или неисправность аккумулятора) ¹
	Зеленый	Сетевой адаптер отключен	Включен измерительный модуль, питание от аккумулятора. Уровень зарядки индицируется на экране, см. раздел 5.2.3.
	Красный		Напряжение аккумулятора ниже нормы (измерительный модуль будет выключен)
	Не горит		Выключен измерительный модуль

Зарядка аккумуляторов начинается при подключении сетевого адаптера и продолжается с возможными перерывами в случае перегрева до полной зарядки. Состояние и уровень зарядки индицируются на экране в окне контроля источников питания. Если анализатор будет использоваться в режиме питания от аккумуляторов, дождитесь полной зарядки: индикатор **POWER** должен прекратить мигание и гореть оранжевым цветом.

Электрическая емкость аккумуляторов уменьшается в результате износа в процессе эксплуатации. При существенном уменьшении продолжительности измерений с отключенным адаптером питания аккумуляторы следует заменить на новые однотипные.

Внимание! Аккумуляторы, полностью разряженные в процессе длительного хранения, должны быть полностью заряжены. Зарядка полностью разряженных аккумуляторов начинается миганием индикатора **POWER** Зеленый в течение 10-15 минут, после чего начинается обычная процедура зарядки. Если индикатор мигает в течение 30 минут и более - аккумуляторы неисправны или отсутствуют, их нужно заменить.

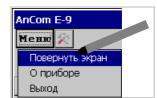
¹ Зарядка может быть временно приостановлена из-за перегрева или выключена по причине обнаружения неисправности (перепутаны полюса аккумуляторов, вставлены батарейки и т.п.). В случае перегрева зарядка будет продолжена после остывания аккумуляторов, в случае неисправности аккумуляторы нужно заменить.

5.2 Подготовка к работе

5.2.1 Включение анализатора

Подключите сетевой адаптер к сети переменного напряжения 220В/50Гц и к гнезду **DC 15V** анализатора, нажмите и отпустите кнопку включения «●» на лицевой панели.

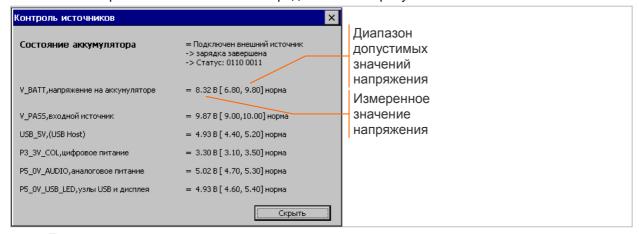
Должен включиться экран и появиться окно подтверждения включения 1 , в котором необходимо нажать стилусом кнопку $\overline{\mathbf{OK}}$:


Активируйте программное обеспечение анализатора — вызовите из меню "Start" программу AnCom E-9:

Загрузка программы сопровождается задержкой в 2 - 3 секунды, после чего на экране открывается главное окно AnCom E-9. Дальнейшая работа оператора происходит во взаимодействии с вызванной программой.

5.2.2 Ориентация экрана

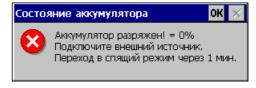
Ориентация экрана анализатора может быть изменена с вертикальной на горизонтальную командой "Меню/ Повернуть экран" из контекстного меню программы AnCom E-9, как показано на рисунке:



5.2.3 Контроль источников питания

Окно контроля источников питания открывается двойным нажатием кнопки в нижней строке экрана, вид кнопки зависит от состояния источников питания:

- 👲 питание от сетевого адаптера;
- **■**, **■**, **■**, **■**, **■**, **■** питание от аккумуляторов, уровень заряда: 100%, ≥35%, ≥10%, ≥5%, ≥1%.


Окно контроля источников питания представлено на рисунке:

При критическом значении напряжения происходит автоматическое прекращение измерений и выключение анализатора.

За 1 мин до выключения на экран выводится сообщение о необходимости подключения внешнего источника питания:

Подключение сетевого адаптера обеспечивает продолжение процесса измерений.

18 AnCom E-9

¹ При включении после аппаратного сброса появляется также окно "Data/Time Properties", в котором необходимо установить дату и время.

5.2.4 Выключение анализатора

Анализатор выключается при удержании кнопки « » нажатой в течение 2 - 3 секунд, до уменьшения яркости экрана. Экран гаснет в момент перехода анализатора в спящий режим. Время пребывания в спящем режиме до полного разряда аккумуляторов не менее 1 мес.

Возможно выключение анализатора во время измерений. После повторного включения возникает небольшая задержка - анализатор закрывает окна с результатами прерванных измерений и переходит в главное окно AnCom E-9.

Аварийное выключение анализатора в результате полного разряда аккумуляторов приводит к появлению сообщения "Аккумулятор разряжен!" после повторного включения. Если подключен внешний источник питания, можно закрыть окно предупреждения и продолжить работу.

5.2.5 Перезагрузка ПО

Аппаратный сброс и перезагрузка ПО выполняются после кратковременного нажатия стилусом на кнопку "Reset", расположенную на нижней панели. Рекомендуется предварительно выключить анализатор, удерживая кнопку « » в течение 2-3 с.

Продолжительность перезагрузки ~ 15 с, окончание перезагрузки сопровождается включением подсветки экрана. Если перезагрузка не закончена за 30 с, выполните повторное кратковременное нажатие на кнопку "Reset".

5.3 Приемы работы с анализатором

5.3.1 Ввод числовых параметров

Ввод с помощью кнопок 🖹 при увеличении или уменьшении отдельного разряда числа:

Необходимо выделить цифру, значение которой должно изменяться при нажатии кнопок. Кнопки изменяют старшую выделенную цифру или старшую цифру числа, если нет выделенных. Цифры выделяются "перечеркиванием" их стилусом.

Изменение знака знакопеременного числа:

Знак числа изменяется касанием символа «+/-» стилусом.

Ввод с помощью окна редактирования при изменении нескольких разрядов числа:

В окне отображается новое значение параметра, каждый разряд которого можно изменять с помощью расположенного под ним ряда кнопок. Нажатие кнопки сопровождается инверсией цвета и изменением значения требуемого разряда числа.

Кнопка =0 обнуляет все разряды числа.

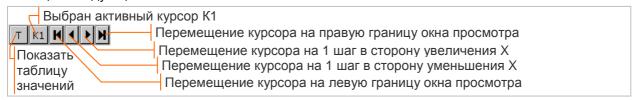
Кнопка =9 присваивает «9» всем разрядам.

Старое значение параметра заменяется на новое после закрытия окна редактирования.

Ввод с помощью экранной клавиатуры¹ при изменении нескольких разрядов числа:

Кнопка в нижней строке экрана открывает экранную клавиатуру (Keyboard, ReyRus) или закрывает панель клавиатуры (Hide Input Panel).

После открытия клавиатуры необходимо выделить стилусом группу цифр, значения которых должны замещаться при вводе или установить курсор ввода касанием требуемой позиции.


<u>[cti]áü]`]\</u>
Кнопка <u></u>удаляет символы слева от курсора ввода (до точки). Новые символы добавляются справа от курсора ввода.

Внимание! Сохранение и ввод новых значений параметров в аппаратуру выполняется в момент нажатия кнопки **ОК** в окне настройки. Закрытие окна настройки без нажатия "ОК" означает отмену редактирования и возврат к старым значениям всех параметров.

¹ Экранная клавиатура используется также при вводе текстовых параметров.

5.3.2 Управление курсорами

Активный курсор диаграммы перемещается касанием требуемой точки графика или с помощью следующих кнопок:

Кнопка <u>К1</u> / <u>К2</u> устанавливает режим отображения одного или двух курсоров. В режиме отображения двух курсоров активным является К2.

Кнопка Т / Д изменяет графическое отображение диаграммы на таблицу значений. Активный курсор в таблице значений отображается выделением строки, как показано на рисунке:

5.3.3 Подпись курсора, расстояние между курсорами

Подпись курсора в верхней строке диаграммы содержит информацию о значении представленного на диаграмме параметра Y при значении X, заданном перемещением курсора.

В зависимости от разрешения диаграммы подпись курсора может иметь вид:

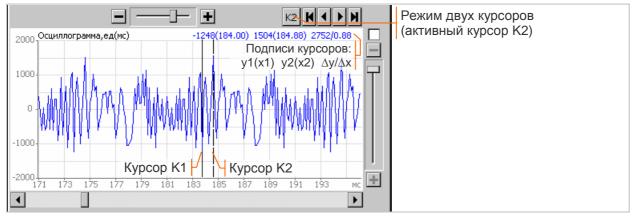
- Y(X) точное значение Y при заданном X;
- Ymax ÷ Ymin (X) диапазон значений Y на шаге перемещения курсора при заданном X.

Диапазон значений отображается в случае низкого разрешения диаграммы, когда на одном шаге перемещения курсора по оси X имеется несколько значений параметра Y. Если для диапазона значений выполняется условие Ymax = Ymin = Y, подпись курсора имеет вид Y(X).

В режиме двух курсоров в верхней строке диаграммы отображаются подписи левого курсора, правого курсора и расстояние между двумя точками графика, заданными положением курсоров:

- Y1(X1) Y2(X2) ∆Y / ∆X подписи курсоров и расстояние по осям X и Y;
- Y1(X1) Y2(X2) ∆x=XXX
 подписи курсоров и расстояние по оси X для рефлектограмм.

Расстояние $\Delta Y / \Delta X$ не отображается при низком разрешении диаграммы, когда на одном шаге перемещения курсора по оси X имеется несколько значений параметра Y.


5.3.4 Масштабирование графиков

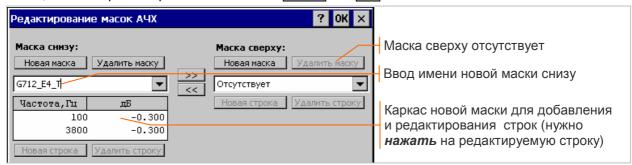
Масштабирование диаграммы по осям X и Y производится с помощью горизонтального и вертикального регуляторов:

Масштабирование по оси Y может также выполняться касанием нижней части вертикальной оси (растяжение) или верхней части оси (сжатие), как показано выше на рисунке.

Режим автомасштабирования по оси Y включается сбросом флажка разрешения ручного масштабирования, как показано ниже на рисунке:

Отсутствие горизонтального или вертикального регулятора означает, что масштаб графика по соответствующей оси не может быть изменен. В фиксированном масштабе отображаются хорошо видимые на экране анализатора графики с небольшим количеством точек.

5.3.5 Маски (шаблоны) характеристик


Возможна установка масок (шаблонов) для некоторых измеряемых характеристик. Маска может быть предопределенной, как в окне анализа формы импульса, или редактируемой.

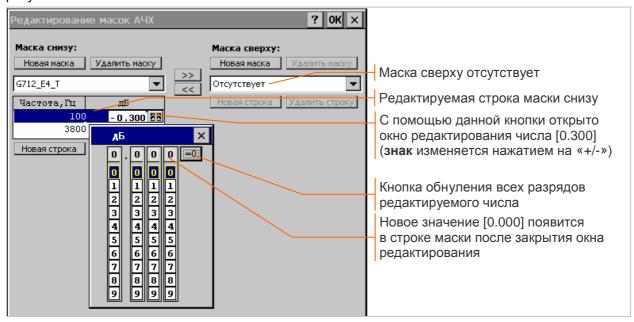
Результат проверки соответствия измеренной характеристики установленной маске обозначается «ОК» или «ERR».

5.3.6 Редактирование масок

Пользователь может создавать и редактировать маски, представляющие собой текстовые файлы. Маски, ограничивающие область значений характеристики сверху и снизу, могут иметь одно и то же имя, поскольку сохраняются в разных папках и редактируются по отдельности.

Установку масок, а также их создание, редактирование и удаление обеспечивает редактор масок, окно которого открывается кнопками **Маски** или **Мк**.

Последовательность действий по созданию и установке новой маски:

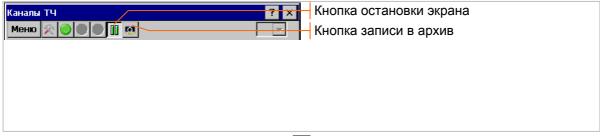

- нажать кнопку Новая маска и ввести новое имя, как показано на рисунке выше; имена рекомендуется назначать так, чтобы они отражали источник, на основании которого создана маска;
- добавить требуемое количество строк к каркасу новой маски¹ с помощью кнопки Новая строка, отредактировать строки образовавшейся таблицы, как показано далее на рисунке;
- закончить редактирование нажатием кнопки **ОК**, закрытие окна редактора без нажатия данной кнопки означает отмену редактирования.

Установка существующей маски выполняется выбором имени маски с последующим нажатием кнопки **ОК** в заголовке окна редактора.

Удаление файла маски осуществляется выбором имени маски с последующим нажатием кнопки Удалить маску и кнопки **ОК**. Закрытие окна редактора без нажатия "ОК" означает отмену удаления.

¹ Новая строка добавляется после строки, выбранной для редактирования.

Окно редактора при внесении изменений в строки новой маски представлено ниже на рисунке:

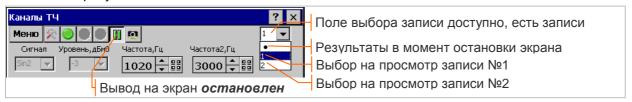


5.3.7 Запись результатов в архив

Результаты анализа формы импульса, спектр и осциллограмма джиттера, результаты анализа каналов ТЧ, характеристики кабеля (спектр, АЧХ, рефлектограмма) записываются в архив по команде оператора **во время сеанса** измерений.

Последовательность выполнения записи:

- открыть окно, отображающее требуемые результаты измерений, остановить вывод на экран нажатием кнопки в в верхней строке окна;
- выполнить запись нажатием кнопки (кнопка появляется в момент остановки вывода на экран, как показано на рисунке и удаляется с экрана после выполнения записи:

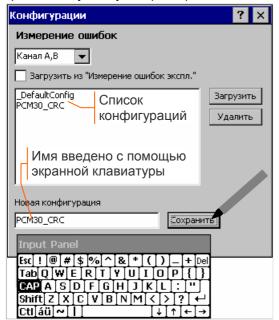


Записи в архив нумеруются последовательно в пределах сеанса. Отображаемые в окне результаты сохраняются вместе с параметрами настройки измерителя и генератора.

Запись временных зависимостей измеряемых параметров, а также характеристик MTJ, JTF и таблицы оценок качества речи выполняется автоматически **во время сеансов** измерений.

5.3.8 Просмотр записей из архива

Во время сеанса измерений возможен просмотр записей, выполненных в ходе сеанса. После остановки вывода на экран нужно установить требуемый номер записи в поле выбора записи, как показано на рисунке:


Поле выбора записи недоступно до начала сеанса измерений, после возобновления вывода на экран, как показано ниже на рисунке, а также в случае отсутствия записей:

Для просмотра записей после завершения сеанса требуется найти и **открыть** требуемый сеанс в архиве измерений в соответствии с описанием в разделе 7.4.1.

5.3.9 Сохранение и загрузка конфигураций

Параметры настройки анализатора сохраняются в файле конфигурации, расширение имени файла и служебную директорию для его записи анализатор выбирает автоматически.

Окно сохранения и загрузки конфигураций открывается кнопкой **Конфиг** главного окна.

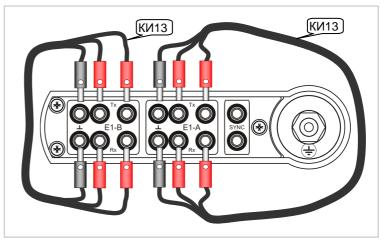
Сохранение текущей конфигурации возможно в любой момент времени.

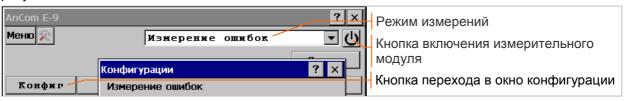
В поле "Новая конфигурация" нужно ввести с помощью экранной клавиатуры имя сохраняемой конфигурации и нажать кнопку **Сохранить**. При ответе **ОК** на запрос подтверждения новое имя появляется в списке конфигураций, как показано на рисунке.

Загрузка конфигурации требует выключения измерительного модуля и установки в главном окне необходимого режима измерений. В поле Канал А,В ▼ должен быть задан вариант использования каналов Е1-А, Е1-В, для которого требуется загрузить ранее созданную конфигурацию.

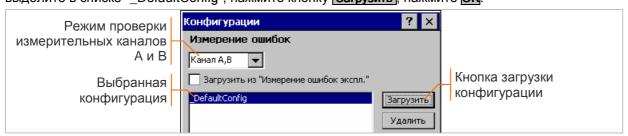
Имя конфигурации нужно выделить стилусом в списке конфигураций и нажать кнопку Загрузить или Удалить. При ответе ОК на запрос подтверждения выполняется заданное действие.

5.4 Контроль функционирования

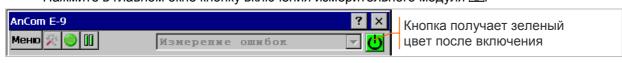

Соедините кабелями КИ13:

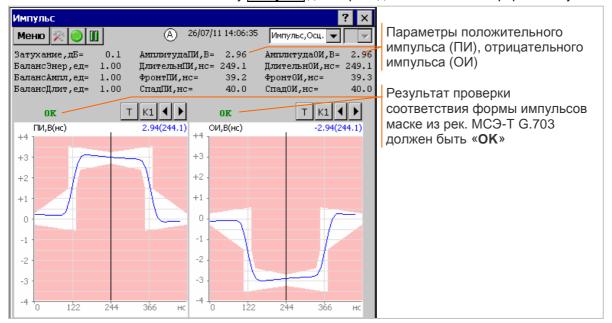

- разъем Е1-А Тх и Е1-А Rх;
- разъем E1-B Тх и E1-B Rх.

Нажмите и отпустите на лицевой панели анализатора кнопку «•» - должна включиться подсветка экрана. Нажмите стилусом кнопку **ОК** в ответ на запрос подтверждения.


Вызовите из меню "Start" внизу экрана программу AnCom E-9.

Установите в главном окне режим "Измерение ошибок", нажмите для перехода в окно конфигурации кнопку **Конфиг**, как показано ниже на рисунке:




В окне конфигурации установите режим проверки измерительных каналов Канал А,В ▼, выделите в списке " DefaultConfig", нажмите кнопку Загрузить, нажмите ОК:

Нажмите в главном окне кнопку включения измерительного модуля 😃:

Нажмите в главном окне кнопку Импульс для перехода в окно анализа формы импульсов:

Результаты проверки формы положительных и отрицательных импульсов, формируемых передатчиком E1-A, должны быть «**OK**», как показано выше на рисунке.

Соедините кабелем КИ13 разъемы **E1-B Tx** и **E1-A Rx**. Результаты проверки формы импульсов, формируемых передатчиком E1-B, должны быть **«ОК»**, как показано на рисунке выше.

Восстановите соединение разъемов **E1-A Tx** и **E1-A Rx**, **E1-B Tx** и **E1-B Rx** в соответствии с рисунком в начале раздела, затем нажмите кнопку сброса индикаторов в верхней строке окна.

Положительным результатом контроля через 15 минут после сброса индикаторов являются:

- зеленый цвет светодиодных индикаторов LOS, AIS, LOF, LOM, CRC, RAI, MRA, ERR, PL;
- нулевые значения счетчиков и коэффициентов ошибок Битов, Кода, FAS, MFAS, CRC4, E-bit на экране анализатора, как показано ниже на рисунке:

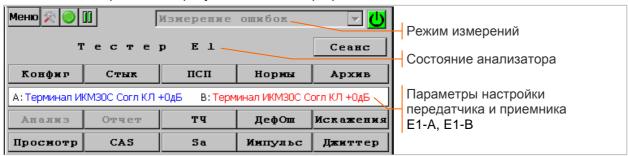
5.5 Формирование сигнала «Все 1» при поверке анализатора

В соответствии с описанием в разделе 5.4 установите режим "Измерение ошибок", загрузите конфигурацию "_DefaultConfig", нажмите кнопку включения измерительного модуля .

Нажмите кнопку **ДефОш** главного окна, установите в открывшемся окне дефектов и ошибок режим непрерывного формирования сигнала AIS ▼ в каналах A и B, как показано на рисунке:

Нажмите кнопку **ОК**, закройте окно дефектов и ошибок.

Формирование сигнала AIS («Все 1») начинается в момент нажатия "ОК".


В верхней строке окна появляется кнопка (нажатая), предназначенная для управления формированием сигнала «Все 1», отжатие данной кнопки прекращает формирование сигнала:

6. Выполнение измерений

6.1 Главное окно

Главное окно обеспечивает выбор режима измерений, включение / выключение измерительного модуля, управление сеансом и отображение текущего состояния анализатора. Главное окно открывается в результате вызова программы AnCom E-9:

Режим измерений должен быть установлен **до включения** измерительного модуля:

- Измерение ошибок измерение количества ошибок и показателей ошибок;
- Измерение ошибок экспл. режим измерения ошибок с запретом ввода дефектов, ошибок и искажений в выходной сигнал;
- Измерение задержки измерение задержки распространения битовой последовательности;
- Имитация задержки формирование задержки передачи поступающего на вход сигнала;
- Измерение MTJ измерение максимально допустимого джиттера;
- Измерение JTF измерение передаточной характеристики джиттера;
- Анализ кабеля измерение параметров кабелей, предназначенных для передачи сигнала E1¹.
 Кнопка включения и выключения измерительного модуля:
- / U нажатие обеспечивает включение в заданном режиме измерений или выключение. Кнопка начала и прекращения сеанса измерений:
- Сеанс / Сеанс нажатие начинает / прекращает сеанс измерений;
- Сеанс / Сеанс нажатие начинает / прекращает ожидание начала сеанса по времени.

Кнопки перехода в окна настройки анализатора и просмотра результатов измерений:

- Архив управление архивом измерений;
- Конфиг загрузка и сохранение конфигураций;
- Стык настройка передатчика и приемника потока Е1;
- ПСП настройка передатчика и приемника ПСП;
- ДефОш настройка ввода дефектов и ошибок в выходной сигнал;
- Искажения настройка ввода искажений в выходной сигнал;
- Просмотр просмотр данных в КИ;
- CAS контроль битов CAS;
- Sa контроль S-битов FAS/NFAS;
- **ТЧ** анализ каналов ТЧ, оценка качества передачи речи;
- Импульс анализ формы импульса входного сигнала;
- Джиттер анализ параметров джиттера;
- MTJ измерение максимально допустимого входного джиттера (МТЈ);
- JTF измерение передаточной характеристики джиттера (JTF);
- Анализ анализ временных зависимостей в период сеанса измерений;
- Нормы нормирование показателей ошибок и измеряемых параметров потока E1;
- Формирование отчетов по результатам сеанса измерения показателей ошибок;
- Закрыть / Удалить завершает просмотр результатов или удаляет сеанс из архива.

Кнопки настройки и просмотра результатов измерений в режиме анализа кабеля:

- Г/И настройка генератора и измерителя;
- АЧХ измерение АЧХ;
- Спектр измерение спектра;
- Рефлект. измерение рефлектограммы.

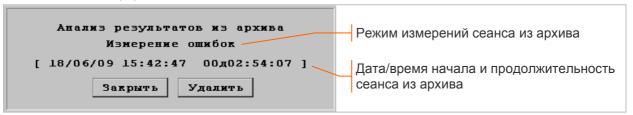
26 AnCom E-9

__

¹ Дополнительный режим, отсутствующий в базовом варианте поставки.

6.1.1 Отображение состояния анализатора

Информация о состоянии анализатора отображается в виде текстовой строки:


- "Тестер Е1" индикация текущих значений параметров входного сигнала после включения;
- "Жду начала сеанса" ожидание автоматического начала сеанса измерений;
- "дд/мм/гг чч:мм:сс" дата/время начала сеанса; анализатор отображает результаты текущего сеанса измерений и осуществляет запись в архив.

Параметры настройки передатчика и приемника каналов Е1-А, Е1-В отображаются разным цветом. Описание параметров настройки представлено в разделе 6.2.1.

Текущие значения параметров, измеряемых в каналах E1-A, E1-B, отображаются в виде таблицы, состав параметров определяется режимом измерений. Начало таблицы всегда содержит значения уровня и отклонения частоты входного сигнала, а также максимальные по абсолютной величине значения данных параметров за время измерений:

Открытие сеанса из архива для просмотра результатов измерений сопровождается выводом в главном окне информации о сеансе:

Сеанс из архива можно открыть для просмотра во время выполнения измерений, вместо результатов текущих измерений анализатора отображаются результаты, сохраненные в архиве.

6.1.2 Кнопки оперативного управления

Заголовок окна может содержать следующие кнопки:

Верхняя строка окна может содержать следующие кнопки:

Кнопка Меню открывает контекстное меню для быстрого перехода между окнами.

Кнопка 🗾 открывает окно настройки.

Кнопка (зеленая) обеспечивает сброс индикации ранее обнаруженных дефектов и ошибок, отсутствующих в данный момент, а также сброс счетчиков ошибок и максимальных измеренных значений параметров, если прибор используется в режиме тестера Е1. Кнопка обеспечивает также сброс усреднения измеряемых параметров в режиме анализа кабеля.

Кнопка управления вводом дефектов (красная)²:

- / 🔟 нажатие останавливает вывод, появляется метка «●» / отжатие возобновляет вывод.

Остановка экрана блокирует возможность изменения параметров настройки каналов E1-A, E1-B и связанные с этой возможностью кнопки главного окна.

AnCom E-9 27

-

¹ Кнопка отсутствует, если измерительный модуль выключен.

² Кнопка отсутствует, если запрещен ввод дефектов и ошибок, кнопка недоступна во время паузы.

Кнопка записывает в архив во время сеанса видимые на экране результаты измерений, для которых не обеспечивается автоматическая запись¹. Кнопка появляется в момент остановки экрана и удаляется после выполнения записи.

Нижняя строка экрана может содержать следующие кнопки:

Кнопка ³ открывает окно информации о связи с ПК по USB, если отсутствует - нет связи.

Кнопка 星 открывает окно управления яркостью и ориентацией экрана.

Кнопка контроля источников питания:

- , □, □, □, □, □, □, □, питание от аккумуляторов, уровень заряда²: 100%, ≥35%, ≥10%, ≥5%, ≥1%;
- Ф питание от сетевого адаптера.

Кнопка управления громкостью динамика:

• 🐠 / 🥸 - встроенный динамик включен / выключен.

Кнопка информации о подключении к сети:

■ / <u>№</u> - есть подключение / нет подключения к сети Ethernet по протоколу TCP/IP.

Кнопка 11:18 открывает окно установки даты / времени и отображает текущее время.

Кнопка Сворачивает экранные окна.

Кнопка управления экранной клавиатурой:

■ / 🕮 / № - клавиатура закрыта / открыта Keyboard / открыта KeyRus (русифицированная). Все кнопки в нижней строке, кроме двух последних, требуют двойного нажатия стилусом.

AnCom E-9

Анализ

Отчет

Джиттер

Каналы ТЧ

Биты CAS

Биты Sa

Выход

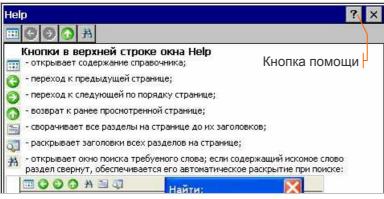
Просмотр КИ

Форма импульса Ввод Деф,Ош

Ввод искажений

Повернуть экран О приборе

6.1.3 Команды меню


Контекстное меню предназначено для быстрого перехода между окнами. Большинство команд меню дублируют соответствующие кнопки главного окна.

Команда "Повернуть экран" изменяет вертикальную ориентацию экрана анализатора на горизонтальную и наоборот, что может быть полезно при анализе графиков и при переходе от ручного к настольному варианту использования.

Команда "О приборе" выводит информацию о версиях встроенного программного обеспечения (ВПО) и аппаратуры анализатора в соответствии с описанием в разделе 9.1.

6.1.4 Контекстный справочник Help

Контекстный справочник открывается кнопкой помощи ? в заголовке окон программы AnCom E-9. Краткое описанием самого справочника открывается кнопкой помощи в заголовке окна программы Help:

¹ Записывает результаты анализа формы импульса, спектр и осциллограмму джиттера, результаты анализа каналов ТЧ, а также характеристики кабеля (спектр, АЧХ, рефлектограмма).

28 AnCom E-9

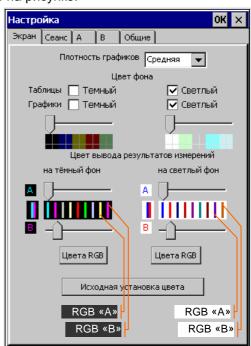
² При понижении уровня заряда ниже критического значения анализатор выключается; за 1 мин до выключения выдается предупреждение о необходимости подключения сетевого адаптера.

6.1.5 Настройка параметров экрана

Окно настройки открывается кнопкой 🖾 главного окна. Параметры отображения таблиц и графиков устанавливаются на вкладке "Экран", как показано на рисунке:

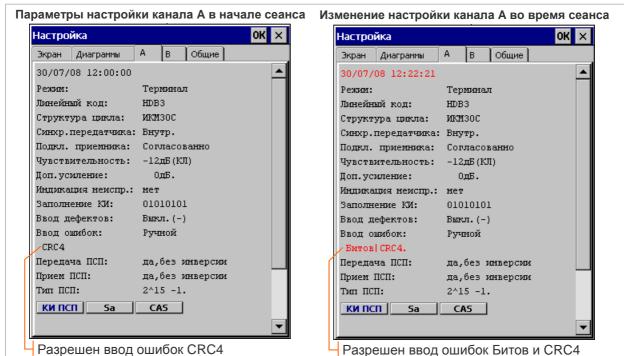
Параметр "Плотность графиков" может иметь значения: Высокая, Средняя, Низкая.

Графики с высокой плотностью имеют меньшую толщину линий и большее количество отсчетов на экране. Параметр не влияет на отображение осциллограмм, рефлектограмм и диаграмм спектра, которые всегда отображаются с высокой плотностью.


Флажки "Темный" / "Светлый" обеспечивают выбор цветовой палитры, которая раздельно задается для отображения таблиц и графиков.

Возможны два варианта цветовой палитры - с темным фоном и со светлым фоном. Для каждого варианта устанавливается цвет фона и цвет вывода результатов измерений каналов A, B.

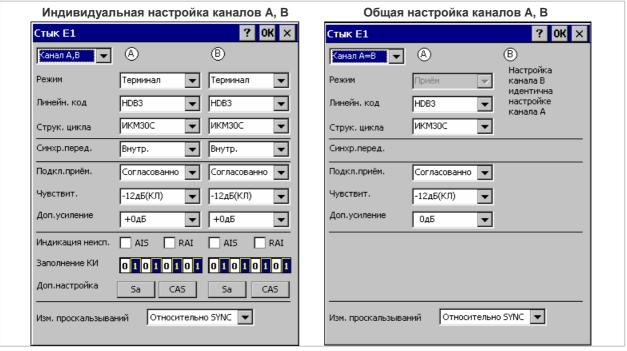
Установка цвета производится перемещением ползунков-указателей стилусом. Образцы вывода линий на темном и светлом фоне представлены на цветовой линейке между ползунками.


Более точная установка цвета для темной и светлой палитры выполняется в окнах настройки, которые открываются кнопками **Цвета RGB**. Контроль установки

цвета осуществляется по двум последним линиям в цветовой линейке.

6.1.6 Информация о настройке измерительных каналов

Информация о параметрах настройки анализатора в процессе измерений содержится на вкладках "А", "В", "Общие" окна настройки. Последние изменения параметров и время изменения выделяются цветом, как показано ниже на рисунке¹:


Начало ввода дефекта или автоматического ввода ошибок обозначается признаком (+), например, AIS(+). Прекращение ввода дефекта или автоматического ввода ошибок обозначается признаком (-).

¹ Измененные параметры настройки не выделяются цветом в режиме "Тестер Е1".

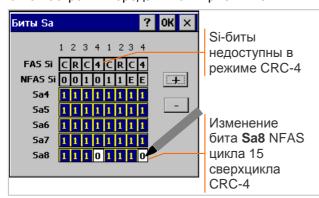
6.2 Передатчик и приемник потока Е1

6.2.1 Параметры передатчика и приемника

Окно настройки передатчика и приемника Е1, представленное ниже на рисунке, открывается кнопкой **Стык** главного окна:

Параметры настройки передатчика и приемника:

- Канал А,В ▼ выбор используемых измерительных каналов:
 - о Канал А используется канал А, канал В выключен;
 - о Канал В используется канал В, канал А выключен;
 - Канал А,В используются каналы А, В с индивидуальной настройкой;
 - о Канал А=В используются каналы А, В в режиме "Прием" с общей настройкой.
- Режим режим включения передатчика и приемника:
 - о Терминал режим оконечного устройства, передатчик и приемник включены;
 - Прием передатчик выключен, в канале А возможно формирование помехи;
 - **Транзит** транзит входного сигнала с переформированием FAS/NFAS, MFAS и CRC-4; передатчик тактируется синхросигналом от приемника; есть возможность замены данных в КИ и битов CAS в КИ16 (Drop & Insert).
- Линейн. код способ кодирования: **HDB3** или **AMI**.
- Струк. цикла выбор структуры цикла:
 - о НЕСТР неструктурированный сигнал;
 - о ИКМ31 сигнал с цикловой структурой по рек. МСЭ-Т G.704;
 - о **ИКМ31С** сигнал с цикловой структурой по рек. МСЭ-Т G.704 и CRC-4;
 - о **ИКМ30** сигнал с цикловой структурой по рек. МСЭ-Т G.704 с CAS в КИ16;
 - о **ИКМ30С** сигнал с цикловой структурой по рек. МСЭ-Т G.704 с CAS в КИ16 и CRC-4.
- Синхр. перед. выбор сигнала тактирования передатчика:
 - о Внутр от внутреннего генератора, возможен ввод искажений в выходной сигнал;
 - SYNC от внешнего синхросигнала 2048 кГц на входе SYNC;
 - о **Rx A** от синхросигнала, выделенного приемником канала A;
 - о **Rx В** от синхросигнала, выделенного приемником канала В.
- Подкл.прием. входной импеданс приемника: Согласованно (120 Ом) или Высокоомно.
- Чувствит. чувствительность приемника и режим входного эквалайзера:
 - -12дБ(КЛ) допустимые затухания от 0 до минус 12 дБ (режим короткой линии);
 - -43дБ(ДЛ) допустимые затухания от 0 до минус 43 дБ (режим длинной линии).
- Доп. усиление дополнительное усиление входного сигнала при высокоомном подключении приемника или при согласованном подключении к ЗКТ: 0дБ, 20дБ, 26дБ, 32дБ.
- Индикац. неисп. разрешение формирования сигнала AIS или RAI при обнаружении дефектов LOS, AIS, LOF во входном потоке¹:


¹Окно вставки аварийных сигналов в выходной сигнал открывает кнопка **ДефОш** главного окна.

- AIS формируется сигнал AIS при обнаружении дефектов во входном потоке;
- RAI формируется сигнал RAI при обнаружении дефектов во входном потоке.
- Заполнение КИ 8-битовый код заполнения всех КИ, свободных от передачи испытательной последовательности и сигнала ТЧ. Нажатие кнопок [0], 1 изменяет значение отдельных битов кода заполнения и сопровождается инверсией цвета.
- Изм. проскальзываний способ определения проскальзывания:
 - Относительно SYNC проскальзывание Rx A и Rx B относительно сигнала на входе SYNC;
 - о Относительно RxA проскальзывание Rx B относительно Rx A.

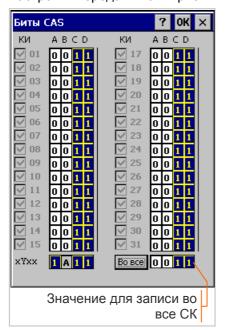
Сохранение и ввод в аппаратуру заданных значений параметров передатчика и приемника Е1 выполняется при нажатии кнопки **ОК** в заголовке окна. Настройка должна быть выполнена до начала сеанса измерений, в режиме тестера. Во время сеанса данные параметры настройки изменить нельзя.

6.2.2 Установка S-битов FAS/NFAS

Окно установки S-битов FAS/NFAS, представленное на рисунке, открывается кнопкой **Sa** окна настройки передатчика и приемника E1:

В режиме **ИКМ30С**, **ИКМ31С** окно содержит кнопки программирования битов Sa4 - Sa8 NFAS сверхцикла CRC-4.

В режиме **ИКМ30**, **ИКМ31** (без CRC-4) также доступны кнопки программирования Siбитов FAS/NFAS.


Кнопки программирования S-битов [0], [1] изменяют значение резервных битов КИО, нажатие кнопок сопровождается инверсией цвета.

Кнопки +, - устанавливают значение "1" или "0" во все доступные S-биты.

Кнопка **ОК** обеспечивает ввод в аппаратуру и сохранение измененных S-битов.

6.2.3 Установка битов CAS

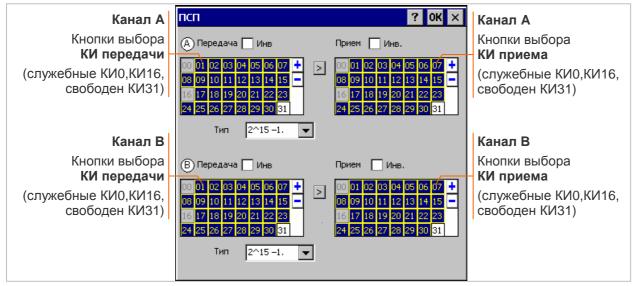
Окно установки битов CAS, представленное на рисунке, открывается кнопкой **CAS** окна настройки передатчика и приемника E1:

Окно содержит кнопки программирования битов ABCD в CK01 - CK15 и CK16 - CK30, соответствующих KИ01 - КИ15 и КИ17 - КИ31.

Кнопки программирования **хҮхх** [о], 1 изменяют значение резервных битов КИ16 в цикле 0 сверхцикла CAS. Недоступен бит "Y", который используется для формировании аварийного сигнала MRAI (1=Alarm).

Кнопки программирования А В С D [0], 1 изменяют значение битов сигнализации в соответствующих СК, нажатие кнопок сопровождается инверсией цвета.

Флажки с номерами КИ разрешают вставку битов ABCD в соответствующие СК в режиме "Транзит". Если флажок сброшен, в СК передается значение битов ABCD, выделенное из входного сигнала.


Кнопка **Во все** предназначена для записи заданного значения битов ABCD во все СК в режиме "Терминал" или во СК с разрешением вставки битов в режиме "Транзит".

Кнопка **ОК** обеспечивает ввод в аппаратуру и сохранение измененных битов сигнализации.

¹ Код заполнения КИ не применяется в режиме "Транзит".

6.3 Передатчик и приемник испытательной последовательности

Окно настройки передатчика и приемника испытательной битовой последовательности, представленное на рисунке, открывается кнопкой **ПСП** главного окна:

Кнопки 00 - 31 обеспечивают формирование набора КИ (n x 64 или m x 64) для передачи и приема испытательной последовательности. Номера кнопок соответствуют номерам КИ. Нажатие кнопки соответствует выбору или освобождению КИ и сопровождается инверсией цвета.

В режиме "Транзит" в КИ, не занятых вставкой ПСП или сигнала ТЧ, осуществляется транзит данных входного сигнала, как показано на рисунке справа:

Кнопка + заполняет битами испытательной последовательности все доступные КИ¹ передачи или разрешает анализ последовательности во всех КИ приема, кроме служебных.

Кнопка — запрещает передачу или прием испытательной последовательности.


Кнопка > дублирует набор КИ передачи для приема и анализа последовательности.

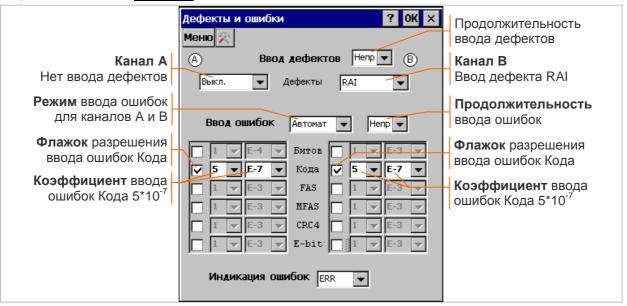
Флажок "Инв." разрешает инверсию битов последовательности при передаче или приеме.

Поле "Тип" обеспечивает выбор типа испытательной последовательности:

- **2^7-1, 2^9-1, 2^11-1** ПСП длиной 127, 511, 2047 бит;
- 2^15-1 ПСП длиной 32767 бит;
- 2^20-1 ПСП длиной 1048575 бит с количеством последовательных нулей не более 14;
- 55h Модиф октеты 55hex и участки с высокой и низкой плотностью единиц;
- Прогр программируемая последовательность длиной от 17 до 32 бит;
- **Альт** программируемая последовательность двух повторяющихся слов по 16 бит; количество повторений каждого слова: от 2 до 255.

Параметры настройки программируемых последовательностей "Прогр" и "Альт":

Сохранение и ввод в аппаратуру заданных значений параметров испытательной битовой последовательности выполняется при нажатии кнопки **ОК** в заголовке окна. Настройка должна быть выполнена до начала сеанса измерений, в режиме тестера. Во время сеанса данные параметры настройки изменить нельзя.


32 AnCom E-9

¹ ПСП заполняет все КИ передачи, кроме служебных и занятых для вставки сигнала ТЧ.

6.4 Ввод дефектов и ошибок

6.4.1 Параметры ввода

Окно ввода дефектов и ошибок в выходной сигнал анализатора, представленное на рисунке, открывается кнопкой ДефОш главного окна:

Параметры ввода дефектов и ошибок в выходной сигнал анализатора:

- Ввод дефектов поле задает продолжительность ввода дефектов в каналах А и В:
 - о Непрер. непрерывное воспроизведения дефекта;
 - о **10с, ... 0.1с** воспроизведения дефекта в течение 10 с, 5.0 с, 2.0 с 1.0 с, 0.5 с, 0.2 с, 0.1 с.
- Дефекты поле обеспечивает выбор дефекта для воспроизведения в канале А или В:
 - Выкл отсутствует воспроизведение дефекта;
 - o LOS прекращение формирования импульсов выходного сигнала;
 - о **AIS** сигнал индикации аварийного состояния (все "1");
 - о LOF потеря цикловой синхронизации;
 - о LOM CAS потеря сверхцикловой синхронизации CAS;
 - LOM CRC¹ потеря сверхцикловой синхронизации CRC-4;
 - RAI сигнал индикации потери цикловой синхронизации;
 - о MRAI сигнал индикации потери сверхцикловой синхронизации;
 - PL потеря синхронизации приемником испытательной последовательности;
 - о **UNFR 01** выдать битовую последовательность 0101... без цикловой структуры.
- Ввод ошибок поле задает режим ввода ошибок в каналах А и В и продолжительность автоматического ввода ошибок:
 - Выкл отсутствует ввод ошибок;
 - Автомат режим автоматического ввода ошибок с заданными коэффициентами;
 - о Ручной режим ручного ввода одиночных ошибок;
 - о Непрер. непрерывный ввод ошибок;
 - о **10с, ... 0.1с** ввод ошибок в течение 10 с, 5.0 с, 2.0 с 1.0 с, 0.5 с, 0.2 с, 0.1 с.
- Флажки разрешают автоматический и ручной ввод ошибок следующих типов²:
 - о Битов битов испытательной последовательности;
 - о Кода линейного кода;
 - о **FAS** циклового синхросигнала FAS;
 - о **MFAS** сверхциклового синхросигнала MFAS;
 - o CRC4 CRC-4;
 - о E-bit CRC-4 на дальнем конце.
- Коэффициенты задают интенсивность автоматического ввода ошибок, для которых выполнена установка флажков разрешения ввода.

Ввод дефектов и ошибок в выходной сигнал начинается с момента нажатия кнопки ок.

¹ Время воспроизведения **LOM CRC** для его обнаружения стороной приема - не менее 1 с.

² Флажок недоступен, если структура сигнала не допускает существования ошибок данного типа.

Разрешение ввода дефектов и ошибок сопровождается появлением кнопок управления в верхней строке окна.

Кнопка управления вводом дефектов (красная):

• 🥑 / 🧖 - нажатие обеспечивает ввод дефектов, отжатие прекращает ввод дефектов.

Кнопка управления вводом всех заданных типов ошибок (желтая):

• 🔲 / 🎾 - нажатие выполняет ввод ошибок / отжатие прекращает автоматический ввод ошибок.

Окончание ввода дефектов и ошибок заданной продолжительности сопровождается автоматическим отжатием кнопок управления.

Кнопки управления недоступны после остановки вывода на экран.

6.4.2 Светодиодная индикация ошибок

Светодиодный индикатор ERR включает красный в секунду обнаружения одной или нескольких ошибок Битов, Кода, FAS, MFAS, CRC4, E-bit. В секунду отсутствия обнаружения ошибок красный цвет выключается (после выключения красного индикатор имеет оранжевый цвет).

Оранжевый цвет означает отсутствие ошибок в данную секунду при обнаружении ошибок в период времени после включения или сброса индикаторов.

Зеленый цвет означает отсутствие ошибок в данную секунду и в период времени после включения или сброса индикаторов.

Поле "Индикация ошибок" в окне настройки устанавливает режим работы индикатора ERR:

- ERR индикация обнаружения хотя бы одной ошибки;
- SER индикация превышения порога фиксации SES¹ согласно рек. МСЭ-Т G.821 и М.2100.

Пороги светодиодной индикации в режиме SER ошибок различных типов представлены в следующей таблице:

олодующей такжище.			
Ошибки	Порог индикации SER	Примечание	
BER	≥ 10 ⁻³	рек. МСЭ-Т G.821, М.2100	
Кода	≥ 2048	2048000бит * 10 ⁻³	
FAS	≥ 28	4000 * 7бит * 10 ⁻³	
MFAS	≥ 2	500 * 4бит * 10 ⁻³	
CRC4	≥ 805	рек. МСЭ-Т М.2100	
E-bit	≥ 805	рек. МСЭ-1 М.2100	

6.4.3 Светодиодная индикация аварий

Индикация аварий осуществляется светодиодами LOS, AIS, LOF, LOM, CRC, RAI, MRA, PL. В секунду обнаружения аварийной ситуации включается красный цвет индикатора. В секунду отсутствия обнаружения аварийной ситуации красный цвет выключается (после выключения красного индикатор имеет оранжевый цвет).

Оранжевый цвет означает отсутствие обнаружения аварийной ситуации в данную секунду при ее обнаружении в период времени после включения или сброса индикаторов.

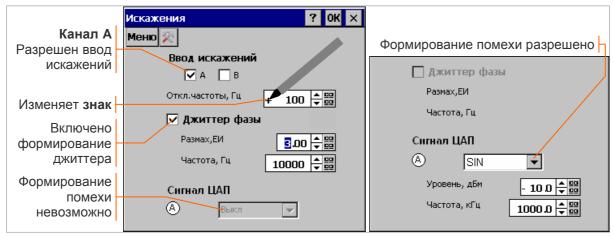
Зеленый цвет означает отсутствие аварийной ситуации в данную секунду и в период времени после включения или сброса индикаторов.

Выключенное состояние индикатора означает невозможность обнаружения данной аварийной ситуации по причине ее несоответствия структуре сигнала или по причине обнаружения другой аварийной ситуации, например LOS.

6.4.4 Сброс индикаторов

Сброс индикаторов аварий и ошибок, обнаруженных ранее и отсутствующих в данную секунду, выполняет зеленая кнопка в верхней строке окна:

Кнопка обеспечивает также сброс счетчиков ошибок в главном окне, если прибор используется в режиме тестера Е1 и оперативный сброс усреднения измеряемых параметров в режиме анализа кабеля.


34 AnCom E-9

٠

¹ Светодиодная индикация превышения порога SES производится без учета периода готовности или неготовности.

6.5 Ввод искажений и помех

Окно ввода искажений и помех, представленное на рисунке, открывается кнопкой **Искажения** главного окна:

Сохранение и ввод в аппаратуру измененных параметров искажений и помех выполняется при нажатии кнопки **ОК** в заголовке окна, закрытие окна без нажатия данной кнопки означает отмену редактирования.

Числовые параметры корректируются при сохранении к ближайшим допустимым значениям.

6.5.1 Ввод искажений

Ввод искажений в выходной сигнал возможен только в режиме синхронизации передатчика от внутреннего генератора¹. Если ввод искажений разрешен в двух каналах, параметры искажений в них являются общими.

Флажки "A", "В" управляют вводом искажений в каналах A и B; флажки нужно установить до начала сеанса измерений, во время сеанса их изменить *нельзя*:

- □ запрещает ввод искажений, передатчик канала тактируется сигналом Fном;

Флажок "Джиттер фазы" включает или выключает формирование синусоидальномодулированного джиттера в канале с разрешенным вводом искажений.

Параметры ввода искажений:


- ОтклЧастоты, Гц отклонение частоты следования бит от номинального значения 2048000 Гц; диапазон значений от минус 10000 до плюс 10000 Гц; знак изменяется касанием стилуса;
- Параметры джиттера:
 - Частота, Гц частота синусоидально-модулированного джиттера, от 16 до 100000 Гц.
 - о Размах, ЕИ размах джиттера, диапазон значений зависит от частоты формирования джиттера (16 Гц: от 0 до 36.9 ЕИ, 18 кГц: от 0 до 2.10 ЕИ, 100 кГц: от 0 до 0.37 ЕИ).

6.5.2 Формирование помехи

Формирование помехи возможно только при выключенном передатчике E1-A; формирование помехи **невозможно**, если в канале A установлен режим "Терминал" или "Транзит".

Тип сигнала помехи выбирается из списка:

- SIN формирование гармонической помехи³ с параметрами:
 - о Уровень, дБм от минус 36.7 до плюс 13.3 дБм, знак изменяется нажатием стилуса;
 - о Частота, кГц от 40.0 до 36864.0 кГц;
- Импульсный формирование импульсной помехи с параметрами:
 - о Амплитуда, В амплитуда импульса, от 0.01 до 3.00 В;
 - о Частота, Гц частота следования импульсов, от 0.001 до 2000 Гц;
 - о Длительн, мкс длительность импульса, от 0.05 до 6.25 мкс, форма импульсов представлена на рисунке:

Выкл. - формирование помехи запрещено.

AnCom E-9 35

¹ Ввод искажений невозможен, если синхронизация передатчика отличается от "Внутр".

² В соответствии со структурной схемой анализатора, представленной в разделе 3.2

³ Гармоническая помеха 2048.0 кГц может использоваться в качестве сигнала SYNC.

6.6 Контроль содержимого КИ

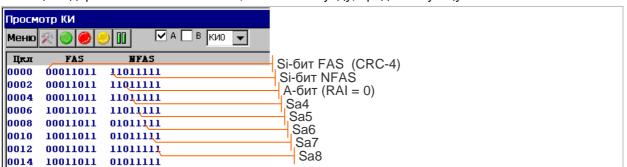
Анализатор обеспечивает различные формы просмотра содержимого КИ входного сигнала, а также возможность контроля S-битов FAS/NFAS и битов сигнализации CAS.

6.6.1 Просмотр КИ

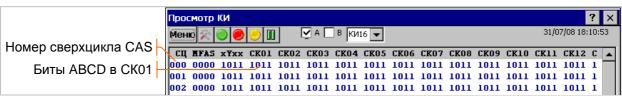
Окно просмотра КИ, представленное ниже на рисунках, открывается кнопкой **Просмотр** главного окна:

Флажки "А", "В" обеспечивают выбор канала¹, для которого в виде таблицы отображаются КИ входного сигнала в соответствии с выбранным режимом просмотра. Полосы прокрутки обеспечивают перемещение по строкам и столбцам таблицы.

Режимы просмотра:


- **КИ** просмотр значений всех КИ, формат отображения **hex** или **bin**;
- **КИО** просмотр значений FAS/NFAS в КИО, формат отображения **bin**;
- **КИ16** просмотр значений битов CAS в КИ16, формат отображения bin.

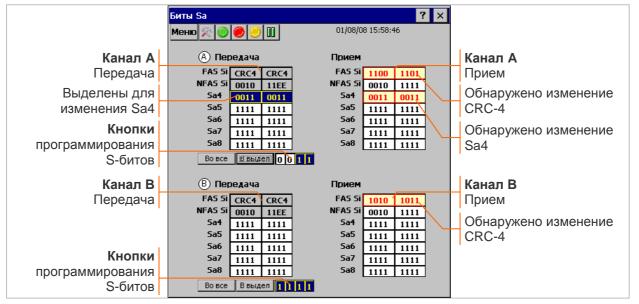
Просмотр всех КИ: строки соответствуют циклам входного сигнала, столбцы соответствуют КИО ... КИЗ1². Обновление данных производится 1 раз в секунду. После остановки вывода на экран таблица содержит значения КИ за 250 циклов, полученных в секунду, предшествующую остановке:



Обеспечивается возможность поиска КИ, имеющих заданное значение. Образец поиска задается с помощью экранной клавиатуры. Найденные значения выделяются цветом фона. Кнопки обеспечивают начало и продолжение поиска.

Просмотр КИО: строки соответствуют циклам входного сигнала, столбцы соответствуют FAS, NFAS. Обновление данных производится 1 раз в секунду. После остановки вывода на экран таблица содержит 8000 значений FAS, NFAS за секунду, предшествующую остановке:

Просмотр КИ16: строки соответствуют сверхциклам входного сигнала, столбцы соответствуют MFAS, хҮхх, СК01,...СК30. Обновление данных производится 1 раз в секунду. После остановки вывода на экран таблица содержит 500 сверхциклов CAS за секунду, предшествующую остановке:


¹ Флажки выбора канала недоступны после остановки вывода на экран.

36 AnCom E-9

² Просмотр КИ возможен для сигнала без цикловой структуры - в этом случае КИ нужно анализировать как последовательность битов с условным разбиением на октеты.

6.6.2 Контроль Ѕа-битов

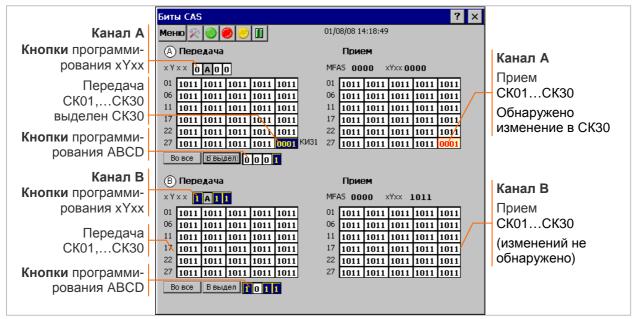
Окно контроля S-битов FAS/NFAS, представленное на рисунке, открывается кнопкой **Sa** главного окна:

В окне отображаются S-биты FAS/NFAS в направлении передачи и приема по измерительным каналам A, B.

Возможно оперативное изменение (программирование) S-битов в направлении передачи. В зависимости от режима программируются:

- биты Si FAS/NFAS и биты Sa4-Sa8 NFAS в режиме **ИКМ30**, **ИКМ31** без CRC-4;
- биты Sa4-Sa8 NFAS в режиме икм30С, икм31С.

Подлежащая изменению тетрада S-битов должна быть выделена нажатием стилуса. Выделение тетрады сопровождается инверсией цвета. Кнопки программирования S-битов [0], 1 задают последовательность, которая записывается во все или только в выделенные тетрады нажатием кнопок Во все или В выдел.


Кнопки программирования недоступны после остановки вывода на экран.

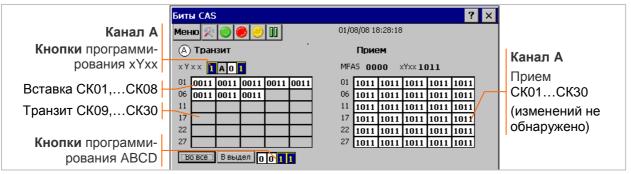
В направлении приема отображаются значения S-битов FAS/NFAS для одного сверхцикла CRC-4. Обновление данных производится 1 раз в секунду. Изменения, обнаруженные в принятых S-битах, выделяются красным цветом.

Мониторинг служебного канала (битов Sa) одновременно в двух направлениях обеспечивается при подключении к объекту контроля входов анализатора Е1-А и Е1-В в режиме "Прием".

6.6.3 Контроль битов сигнализации CAS

Окно контроля битов сигнализации, представленное на рисунке, открывается кнопкой **CAS** главного окна:

В окне отображается сверхцикл CAS в направлении передачи и приема по измерительным каналам A, B.


Возможно оперативное изменение (программирование) битов сигнализации в направлении передачи. Кнопки программирования **хҮхх** [0], [1] задают значения резервных битов КИ16 в цикле 0 сверхцикла CAS. Недоступный для программирования бит "Y" используется при формировании аварийного сигнала MRAI (1=Alarm).

Подлежащий изменению битов сигнализации СК должен быть выделен нажатием стилуса. Выделение СК сопровождается инверсией цвета¹. Кнопки программирования АВСD [0], [1] задают значение битов сигнализации, которое записывается во все или только в выделенные СК нажатием кнопок [Во все] или [В выдел].

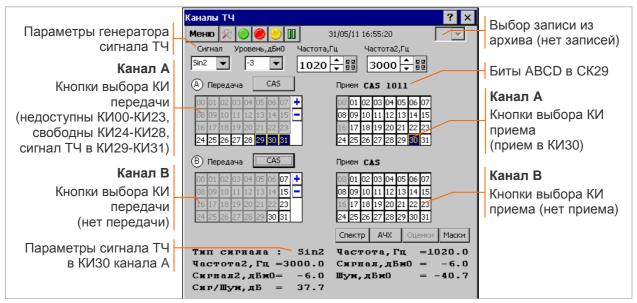
В направлении приема отображаются значения MFAS, резервных битов хҮхх и битов ABCD в СК01,...СК30 для одного сверхцикла CAS. Обновление данных производится 1 раз в секунду. Изменения, обнаруженные в принятых битах, выделяются красным цветом.

Мониторинг сигнализации одновременно в двух направлениях обеспечивается при подключении к объекту контроля входов анализатора Е1-А и Е1-В в режиме "Прием".

В режиме "Транзит" изменение битов ABCD возможно только в тех СК, для которых согласно описанию в разделе 6.2.3 установлены флажки вставки в выходной поток. Окно контроля битов сигнализации в режиме "Транзит" представлено ниже на рисунке:

Сигнал MFAS и резервные биты КИ16 в режиме "Транзит" формируются передатчиком. Кнопки программирования **хҮхх** [0], 1 задают значения резервных битов КИ16. Недоступный для программирования бит "Y" используется при формировании аварийного сигнала MRAI (1=Alarm).

Подлежащий изменению битов сигнализации СК должен быть выделен нажатием стилуса¹. Кнопки программирования ABCD [0], [1] задают значение битов сигнализации, которое записывается во все или только в выделенные СК нажатием кнопок [Во все] или [В выдел].


38 AnCom E-9

-

¹ Для справки выводится номер КИ, которому соответствует выделенный СК.

6.7 Анализ каналов ТЧ

Окно анализа каналов ТЧ, представленное ниже на рисунке, открывается кнопкой ТЧ главного окна:

Параметры генератора сигнала ТЧ:

- Сигнал задает тип измерительного сигнала, формируемого в заданных КИ:
 - о Выкл формирование сигнала ТЧ запрещено, выбор КИ передачи невозможен;
 - o **Sin** гармонический сигнал с частотой от 300 до 3400 Гц;
 - о **Sin2** двухчастотный сигнал с частотами гармоник от 300 до 3400 Гц;
 - о О.131 псевдослучайный сигнал согласно рек. МСЭ-Т О.131;
 - о МЧС многочастотный сигнал с частотами 100, 200... 3800 Гц:
 - **Мик** передается голосовой сигнал от встроенного микрофона или от микрофона телефонной гарнитуры, подключаемой к разъемам **AUDIO**;
 - Р.862 сигнал для оценки качества передачи речи в соответствии с рек. МСЭ-Т Р.862;
- Уровень, дБм0 уровень сигнала¹;
- Частота, Гц частота гармонического сигнала или первой гармоники двухчастотного сигнала;
- Частота2,Гц частота второй гармоники двухчастотного сигнала.

Кнопки 00 - 31 обеспечивают выбор множества КИ для передачи сигнала ТЧ и выбор одного КИ приема. Номера кнопок соответствуют номерам КИ, нажатие соответствует выбору или освобождению КИ и сопровождается инверсией цвета. Недоступные КИ имеют служебное назначение (КИО, КИ16) или заняты для передачи ПСП.

Кнопка + заполняет сигналом ТЧ все КИ передачи, кроме служебных и занятых ПСП.

Кнопка - запрещает передачу сигнала ТЧ.

Кнопка САЅ открывает окно установки битов сигнализации.

Кнопка Спектр открывает окно спектра и осциллограммы.

Кнопка АЧХ открывает окно частотных характеристик (АЧХ и С/Ш) сигнала МЧС.

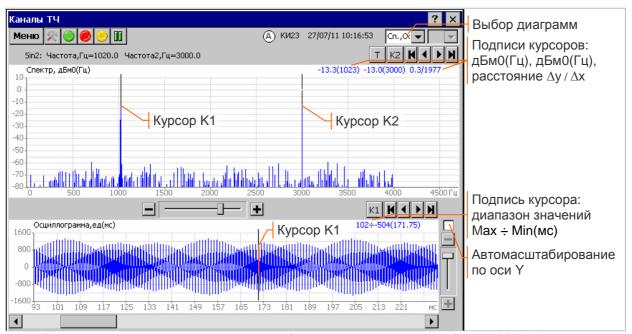
Кнопка **Маски** открывает окно редактора масок АЧХ. Маски создаются и редактируются в соответствии с описанием в разделе 5.3.6.

Передача (вставка) сигнала ТЧ одновременно в канале А и канале В возможна только в режиме "Транзит". Вставка сигнала в режиме "Транзит" перекрывает данные в КИ приема, соответствующих КИ передачи - в них распознается сигнал ТЧ, формируемый анализатором.

Сохранение и ввод в аппаратуру измененных параметров выполняется при нажатии кнопки **ОК** в заголовке окна, закрытие окна без нажатия данной кнопки означает отмену редактирования. Числовые параметры корректируются при сохранении к ближайшим допустимым значениям.

Анализатор автоматически определяет тип сигнала, присутствующего на входе измерителя.

¹ Уровень сигнала в дБм0 определяется в децибелах относительно мощности равной 1 мВт синусоидального сигнала 1 кГц, сформированного в соответствии с рек. МСЭ-Т G.711 (TABLE 5) на нагрузке 600 Ом в точке нулевого относительного уровня.


Сигнал Sin, Sin2, O.131 или MЧС распознается, если его защищенность в диапазоне частот анализа от 16 до 4000 Γ ц превышает пороговое значение Сиг/Шум, дБ > 10. В противном случае тип сигнала распознается как Шум.

Параметры сигнала ТЧ, обнаруженного в заданном КИ приема, отображаются в нижней части окна. Список определяемых параметров содержится в Приложении 7.

Запись в архив результатов измерений сигнала ТЧ, включая спектр, осциллограмму и частотные характеристики, выполняется из данного окна во время сеанса измерений в соответствии с описанием в разделе 5.3.7. Записи в архив нумеруются в пределах сеанса, поле номера записи в верхней строке доступно для выбора записей на просмотр после остановки экрана.

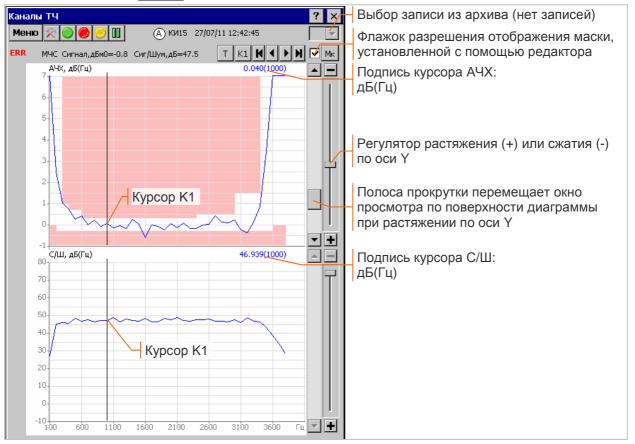
6.7.1 Спектр и осциллограмма сигнала ТЧ

Окно спектра и осциллограммы, представленное на рисунке, открывается кнопкой **Спектр** из окна анализа каналов ТЧ:

В верхней части окна выводится дата/время измерений, канал (А или В), КИ приема, тип и параметры распознанного сигнала ТЧ. На экране отображается одна или две диаграммы, выбор диаграмм обеспечивает поле Сп.,Ос ▼.

Диаграмма "Спектр, дБм0(Гц)" отображает распределения уровня мощности принимаемого сигнала ТЧ по частоте.

Диаграмма "Осциллограмма, ед(мс)" отображает форму цифрового сигнала ИКМ, декодированного в соответствии с А-законом рек. МСЭ-Т G.711. Предельная амплитуда цифрового сигнала (4096 ед) соответствует уровню 3.14 дБм0.


Время развертки осциллограммы составляет 1 с. При максимальном разрешении по оси X шаг перемещения курсора равен 0.125 мс, что соответствует частоте дискретизации 8 кГц в системах ИКМ.

Управление курсорами и масштабирование осуществляется в соответствии с описанием в разделах 5.3.2, 5.3.4.

Запись в архив всех результатов измерений сигнала ТЧ, включая частотные характеристики, выполняется из данного окна во время сеанса измерений в соответствии с описанием в разделе 5.3.7. Поле номера записи в верхней части окна используется для выбора записей на просмотр.

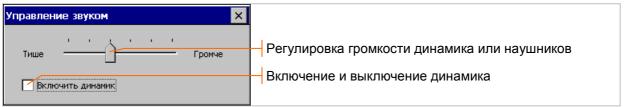
6.7.2 Частотные характеристики затухания и защищенности

Окно частотных характеристик затухания и защищенности, представленное на рисунке, открывается кнопкой **АЧХ** из окна анализа каналов ТЧ¹:

Верхняя часть окна содержит дату/время измерений, канал (А или В), КИ приема, тип и параметры распознанного сигнала ТЧ. Окно содержит две диаграммы, совмещенные по частоте.

Относительная амплитудно-частотная характеристика затухания "АЧХ, дБ(Гц)" определяется по измеренным значениям уровня гармоник МЧС относительно затухания на опорной частоте 1020 Гц.

Частотная характеристика защищенности "С/Ш, дБ(Гц)" определяется как выраженное в децибелах соотношений уровня каждой гармонической составляющей МЧС и уровня шума в полосе частот, соответствующей этой гармонике.

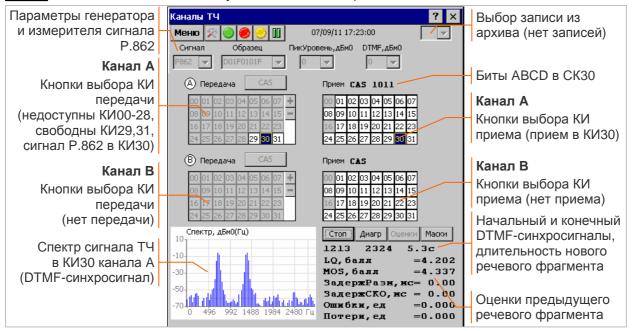

Маски АЧХ создаются и редактируются в соответствии с описанием в разделе 5.3.6. Кнопка Мк открывает окно редактора, флажок рядом с кнопкой позволяет разрешать или запрещать отображение маски, установленной с помощью редактора. Результат проверки соответствия измеренной характеристики установленной маске обозначается «ОК» или «ERR».

Управление курсорами и масштабирование осуществляется в соответствии с описанием в разделах 5.3.2, 5.3.4.

Запись в архив всех результатов измерений сигнала ТЧ, включая спектр и осциллограмму, выполняется из данного окна во время сеанса измерений согласно описанию в разделе 5.3.7.

6.7.3 Управление встроенным динамиком

Сигнал ТЧ в заданном КИ приема воспроизводится встроенным динамиком анализатора. Окно управления звуком динамика открывается двойным нажатием на кнопку <u>ф</u> / <u>ф</u> внизу экрана:


Включение и выключение динамика не влияет на воспроизведение сигнала ТЧ с помощью наушников телефонной гарнитуры, подсоединенной к разъемам **AUDIO**.

¹ Окно частотных характеристик доступно в случае обнаружения в КИ приема сигнала МЧС.

6.8 Оценка качества передачи речи

Оценка качества передачи речи в соответствии с рек. МСЭ-Т Р.862 выполняется сравнением принимаемого в КИ речевого сигнала с эталонным фрагментом речи.

Окно оценки качества передачи речи, представленное на рисунке, открывается кнопкой главного окна. Необходимо установить тип измерительного сигнала "P.862":

Параметры генератора и измерителя сигнала Р.862:

- Сигнал задает тип измерительного сигнала, формируемого и принимаемого в заданных КИ:
 - **Р.862** сигнал для оценки качества передачи речи в соответствии с рек. МСЭ-Т Р.862; любой другой тип сигнала отменяет режим оценки качества передачи речи;
- Образец используемый речевой фрагмент; характеристики эталонных фрагментов речи представлены в Приложении 9.
- ПикУровень,дБм0 максимальный пиковый уровень формируемого речевого сигнала;
- DTMF,дБм0 суммарный уровень 2-частотных составляющих DTMF-синхросигнала;

Кнопки 00 - 31 обеспечивают выбор множества КИ для передачи сигнала ТЧ и выбор одного КИ приема. Номера кнопок соответствуют номерам КИ, нажатие соответствует выбору или освобождению КИ и сопровождается инверсией цвета. Недоступные КИ имеют служебное назначение (КИ0, КИ16) или заняты для передачи ПСП.

Кнопка + заполняет сигналом ТЧ все КИ передачи, кроме служебных и занятых ПСП.

Кнопка - запрещает передачу сигнала ТЧ.

Кнопка **CAS** открывает окно установки битов сигнализации.

Передача (вставка) сигнала ТЧ одновременно в канале А и канале В возможна только в режиме "Транзит". Вставка сигнала в режиме "Транзит" перекрывает данные в КИ приема, соответствующих КИ передачи - в них распознается сигнал ТЧ, формируемый анализатором.

Сохранение и ввод в аппаратуру измененных параметров выполняется при нажатии кнопки **ОК** в заголовке окна¹, закрытие окна без нажатия данной кнопки означает отмену редактирования.

Передачу речевого фрагмента предваряет и заканчивает DTMF-синхросигнал. Анализатор обнаруживает синхросигнал в КИ приема, если защищенность DTMF > 15 дБ, разность уровней гармоник < 8 дБ, отклонение частоты < 1.5 %. Коды DTMF, по которым выполнено распознавание начала и конца речевого фрагмента, длительность фрагмента, а также спектр мощности принимаемого сигнала отображаются в нижней части окна с целью контроля правильности установки КИ приема.

Кнопка **Старт** / **Стоп** разрешает или прекращает вычисление оценок качества. После нажатия данной кнопки оценки вычисляются при обнаружении начального и конечного синхросигналов, интервал между которыми соответствует длительности используемого образца.

Продолжительность вычисления оценки зависит от длительности фрагмента², процент выполнения и время вычислений отображаются в нижней части окна. Обработка всей новой

 2 Продолжительность вычислений для речевого фрагмента максимальной длительности \sim 5 мин.

42 AnCom E-9

-

¹ Сохранение измененных параметров настройки обеспечивает также нажатие кнопки **Старт**.

измерительной информации, за исключением показателей ошибок, приостанавливается на время вычисления оценки.

Полученные оценки качества и параметры, характеризующие потери, искажение и задержку речевых фреймов, отображаются в нижней части окна и автоматически записываются в архив во время сеанса измерений в виде **таблицы оценок качества**. Список определяемых параметров содержится в Приложении 8.

Кнопка Диагр открывает окно графических характеристик качества передачи речи.

Кнопка Оценки открывает таблицу оценок качества передачи речи.

Кнопка **Маски** открывает окно редактора масок АЧХ. Маски создаются и редактируются в соответствии с описанием в разделе 5.3.6.

Кнопка записи в в верхней строке позволяет записать в архив графические характеристики передачи речи во *время сеанса* измерений. Кнопка появляется в момент вычисления оценки и удаляется после выполнения записи. Записи в архив нумеруются в пределах сеанса, поле номера записи в верхней строке доступно для выбора записей на просмотр после остановки экрана.

6.8.1 Таблица оценок качества

Таблица оценок качества передачи речи открывается кнопкой **Оценки** из окна анализа каналов ТЧ во время сеанса измерений или во время просмотра результатов из архива:

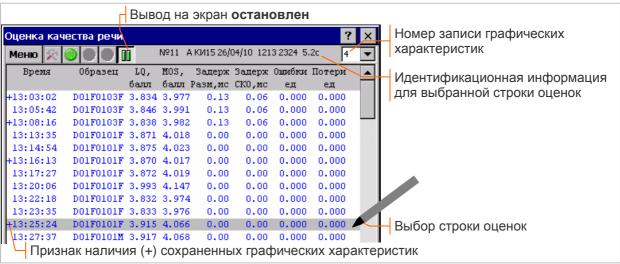
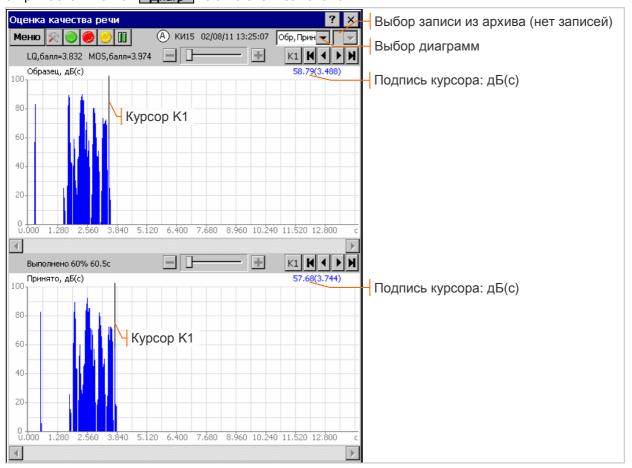


Таблица содержит оценки качества и параметры, характеризующие потери, искажение и задержку речевых фреймов для каждого принятого фрагмента речи, а также признак наличия (+) отсутствия (-) сохраненных графических характеристик.

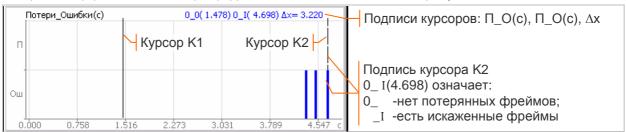
В верхней части окна отображается идентификационная информация для выбранной строки оценок: номер строки, канал (А или В), КИ приема, дата получения оценки, коды начального и конечного DTMF-синхросигналов, длительность принятого речевого фрагмента.


Последовательность действий во время сеанса измерений для просмотра сохраненных в архиве графических характеристик передачи речи:

- остановить вывод на экран нажатием кнопки 🕮;
- выбрать строку оценок, требующую рассмотрения диаграмм, как показано на рисунке выше;
- перейти в окно графических характеристик с помощью команды «Меню/ Диаграммы» или закрыть таблицу оценок и открыть окно диаграмм;
- возобновить вывод на экран после завершения просмотра графиков отжатием кнопки 🔟.

Кнопка записи № в верхней строке позволяет записать в архив графические характеристики во **время сеанса** измерений. Кнопка появляется в момент вычисления оценки и удаляется после выполнения записи. Поле номера записи в верхней части окна используется для выбора записей на просмотр.

6.8.2 Характеристики качества передачи речи


Окно диаграмм характеристик качества передачи речи, представленное ниже на рисунке, открывается кнопкой **Диагр** из окна анализа каналов ТЧ:

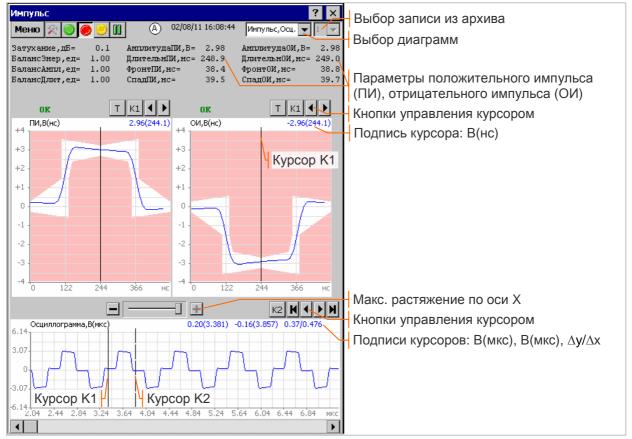
В верхней части окна выводится дата/время анализа, канал (А или В), КИ приема, оценки качества передачи речевого фрагмента. На экране отображаются две диаграммы, выбор диаграмм обеспечивает поле Обр,Прин .

Обновление диаграмм происходит при выполнении 100% вычислений очередной оценки качества, процент и время вычислений отображаются в верхней части второй диаграммы.

Диаграмма флагов потерянных и искаженных фреймов "Потери_Ошибки(с)" имеет общую для двух характеристик ось времени и два отдельные участка вертикальной оси для отметок потерянных (П) и искаженных (Ош) фреймов, как показано ниже на рисунке:

Подпись курсора данной диаграммы имеет вид П_O(c). Признак обнаружения потерянных (П) или искаженных (О) фреймов может принимать значения:

- «0» потерянные или искаженные фреймы не обнаружены;
- «I» обнаружены потерянные или искаженные фреймы.


Маски АЧХ создаются и редактируются в соответствии с описанием в разделе 5.3.6. Кнопка мк в заголовке диаграммы АЧХ открывает окно редактора масок. Флажок рядом с кнопкой позволяет оперативно разрешать или запрещать отображение установленной маски.

Управление курсорами и масштабирование графиков осуществляется в соответствии с описанием в разделах 5.3.2, 5.3.4.

Кнопка записи в в верхней строке позволяет записать графические характеристики в архив во **время сеанса** измерений. Кнопка появляется в момент вычисления оценки и удаляется после выполнения записи. Записи в архив нумеруются в пределах сеанса, поле номера записи в верхней строке доступно для выбора записей на просмотр после остановки экрана.

6.9 Анализ формы импульса

Окно анализа формы импульса, представленное на рисунке, открывается кнопкой **Импульс** главного окна:

Анализ формы импульса выполняется только в канале А при согласованном и высокоомном подключении приемника. В верхней части окна выводится дата/время анализа и измеренные значения параметров, характеризующие форму положительных и отрицательных импульсов, а также баланс их энергии, длительности и амплитуды. Список измеряемых параметров содержится в Приложении 3.

Отображение на экране одной или двух диаграммы обеспечивает поле Импульс,Осц▼.

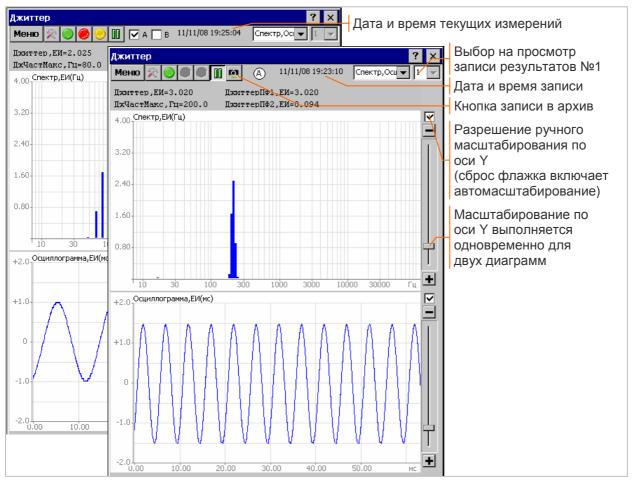
Диаграмма "ПИ, В(нс)", "ОИ, В(нс)" отображает положительный (ПИ) и отрицательный (ОИ) импульсы входного сигнала. Шаг перемещения курсора по оси времени равен 12.207 нс, что соответствует частоте дискретизации 81.92 МГц.

Импульсы масштабируются по амплитуде и перемещаются по оси времени с целью проверки соответствия маске, заданной в рек. МСЭ-Т G.703. Рисунок маски содержится в Приложении 5.

Результаты проверки положительного и отрицательного импульса отображаются на экране:

- ОК форма импульса соответствует маске;
- ERR форма импульса не соответствует маске.

Диаграмма "Осциллограмма, В(мкс)" отображает форму импульсов входного сигнала из текущего буфера АЦП. Время развертки составляет 25 мкс. При максимальном разрешении по временной оси шаг перемещения курсора равен 12.207 нс, что соответствует частоте дискретизации 81.92 МГц.


Управление курсорами и масштабирование осциллограммы осуществляется в соответствии с описанием в разделах 5.3.2, 5.3.4.

Запись в архив результатов анализа формы импульса во время сеанса измерений выполняется в соответствии с описанием в разделе 5.3.7. Поле номера записи в верхней части окна используется для выбора записей на просмотр.

¹ Наличие дополнительного усиления не влияет на результаты анализа.

6.10 Анализ джиттера

Окно анализа джиттера, представленное ниже на рисунке, открывается кнопкой **Джиттер** главного окна:

В верхней части окна выводится дата/время анализа и измеренные значения параметров джиттера. Список измеряемых параметров содержится в Приложении 3.

Выбор канала, параметры джиттера которого отображаются на экране, обеспечивают флажки "А", "В". Флажки выбора канала недоступны после остановки вывода на экран.

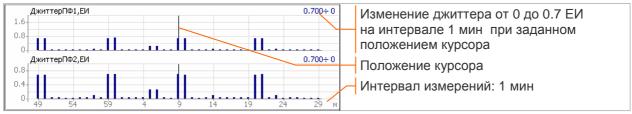

Отображение на экране одной или двух диаграмм обеспечивает поле Спектр,Осц▼.

Диаграмма "Спектр, ЕИ(Гц)" отображает спектральную зависимость фазового дрожания от частоты в диапазоне частот от 8 Гц до 122 кГц, значения частоты отображаются на диаграмме в логарифмическом масштабе.

Диаграмма "Осциллограмма, ЕИ(мс)" отображает осциллограмму фазового дрожания, время развертки составляет 64 мс.

Запись в архив спектральной зависимости джиттера от частоты выполняется во время сеанса измерений в соответствии с описанием в разделе 5.3.7. Поле номера записи в верхней части окна используется для выбора записей на просмотр.

Зависимость размаха фазового дрожания от времени за сеанс измерений отображается в окне анализа временных диаграмм, которое открывается кнопкой **Анализ** главного окна. Временная диаграмма позволяет обнаружить случайное или периодическое появление джиттера:

Скачок джиттера на интервале измерений изображается высотой столбика диаграммы. Локализовать моменты появления джиттера в процессе длительных измерений позволяет отображение диаграммы с изменением временного интервала (1 с, 1 мин, 15 мин, 1 час, 1 день).

Запись зависимости размаха фазового дрожания от времени автоматически выполняется в сеансах измерения ошибок.

6.11 Режимы измерений

6.11.1 Измерение ошибок

Режим "Измерение ошибок" должен быть установлен в главном окне **до включения** измерительного модуля.

Измерения выполняются в одном или в двух каналах (A, B). Обеспечивается измерение количества и коэффициентов ошибок, обнаружение аварийных сигналов, измерение показателей ошибок согласно рек. МСЭ-Т G.821, G.826, М.2100, измерение проскальзывания, измерение параметров сигнала 2048 кбит/с. Обеспечивается проверка оперативных или долговременных норм согласно приказу Минсвязи РФ №92 от 10.08.96.

В дополнение к основным измерениям может выполняться анализ формы импульса, анализ джиттера, анализ сигналов ТЧ и качества передачи речи, просмотр данных в КИ, а также ввод дефектов, ошибок и искажений в выходной сигнал.

Настройка анализатора, необходимая для выполнения измерений, осуществляется с помощью загрузки ранее созданной конфигурации или в окнах настройки, которые открываются кнопками главного окна:

- Стык настройка передатчика и приемника потока Е1;
- ТЧ если нужно освободить КИ для передачи испытательной последовательности;
- ПСП настройка передатчика и приемника испытательной последовательности;
- Искажения запрет или разрешение ввода искажений в выходной сигнал.

Измерительный модуль включается с помощью кнопки , после включения могут быть изменены любые параметры настройки анализатора, кроме режима измерений.

Главное окно после включения содержит надпись "Тестер E1" и таблицу текущих значений параметров, измеряемых в каналах A, B. Таблица содержит значения уровня, отклонения частоты, джиттера входного сигнала, максимальные по абсолютной величине значения данных параметров за время измерений, а также показатели ошибок или проскальзывания¹.

Показатели ошибок или проскальзывания отображаются на экране в соответствии с установкой флажков, как показано на рисунке в конце данного раздела:

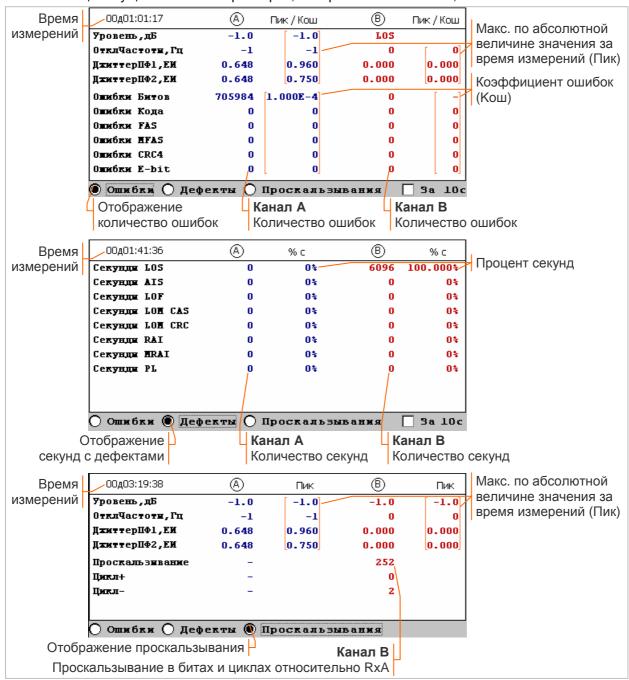
- Ошибки отображается количество ошибок и коэффициенты ошибок;
- О Дефекты отображается количество и процент секунд с обнаружением дефектов;
- Проскальзывания отображается проскальзывание в битах и циклах сигналов RxA, RxB;
- За 10 с отображаются показатели ошибок за последние 10 с;
- □ 3a 10c отображаются показатели ошибок за время после включения или команды сброса².

Измерения можно продолжать в режиме тестера или начать сеанс измерений с помощью кнопки Сеанс. Параметры настройки передатчика и приемника потока Е1 и передатчика и приемника испытательной последовательности до завершения сеанса изменить нельзя.

Дата и время начала сеанса измерений выводится в главном окне, результаты сохраняются в архиве, отображаются в виде отчетов и диаграмм и могут быть проанализированы на соответствие заданным нормам.

Окно установки норм открывается кнопкой **Нормы**. Установка и изменение норм, связанных с сеансом измерений, возможны в любой момент времени: до начала, во время выполнения измерений, после завершения сеанса.

Сеанс измерений может быть завершен в ручном режиме с помощью кнопки **Сеанс** или автоматически, по достижении заданного времени. Время начала и продолжительность сеанса задаются на вкладке "Сеанс" окна настройки, которое открывается кнопкой из главного окна.


AnCom E-9 47

-

¹ В случае отсутствия результата измерения, вместо значения параметра выводится символ "-".

² После начала сеанса отображаются показатели ошибок за время сеанса измерений.

Таблица текущих значений параметров, измеряемых в каналах А. В:

Описание измеряемых параметров содержится в Приложении 3, Приложении 4.

6.11.2 Эксплуатационные измерения

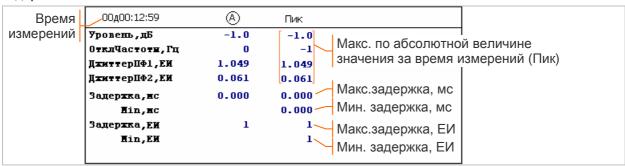
Режим "Измерение ошибок экспл" должен быть установлен в главном окне **до включения** измерительного модуля.

Данный режим аналогичен режиму измерений ошибок. Отличие заключается в том, что в режиме эксплуатационных измерений запрещен ввод дефектов, ошибок и искажений в выходной сигнал с целью защиты от неправильных действий оператора в процессе длительных измерений.

6.11.3 Измерение задержки

Режим "Измерение задержки" должен быть установлен в главном окне **до включения** измерительного модуля.

Измерение выполняется в одном канале (А или В) по шлейфу на удаленной стороне в соответствии со схемой подключения 2. Обеспечивается измерение задержки распространения формируемой анализатором битовой последовательности, а также светодиодная индикация ошибок 1 и аварийных сигналов.


Дополнительно может выполняться анализ формы импульса, анализ джиттера, анализ сигналов ТЧ, просмотр данных в КИ, а также ввод дефектов, ошибок и искажений в выходной сигнал.

Настройка анализатора, необходимая для выполнения измерений, осуществляется с помощью загрузки ранее созданной конфигурации или в окнах настройки, которые открываются кнопками главного окна:

- Стык настройка передатчика и приемника потока Е1 (канал А или В, режим "Терминал");
- ТЧ если нужно освободить КИ для передачи битовой последовательности;
- ПСП должны быть заданы совпадающие КИ передачи и приема²;
- Искажения запрет или разрешение ввода искажений в выходной сигнал.

Измерительный модуль включается с помощью кнопки **Ш**, после включения могут быть изменены любые параметры настройки анализатора, кроме режима измерений.

Главное окно после включения содержит надпись "**Tectep E1**" и таблицу текущих значений параметров, измеряемых в канале А или В. Таблица содержит значения уровня, отклонения частоты, джиттера входного сигнала, максимальные по абсолютной величине значения данных параметров за время измерений, а также текущие, минимальные и максимальные значения задержки³:

Описание измеряемых параметров содержится в Приложении 3.

После включения и настройки можно продолжить измерения в режиме тестера или начать сеанс измерений с помощью кнопки Сеанс. Параметры настройки передатчика и приемника потока Е1 и передатчика и приемника испытательной последовательности до завершения сеанса изменить нельзя.

Дата и время начала сеанса измерений выводится в главном окне, результаты сохраняются в архиве, отображаются в виде отчетов и диаграмм.

Сеанс измерений может быть завершен в ручном режиме с помощью кнопки **Сеанс** или автоматически, по достижении заданного времени. Время начала и продолжительность сеанса задаются на вкладке "Сеанс" окна настройки, которое открывается кнопкой из главного окна.

AnCom E-9 49

-

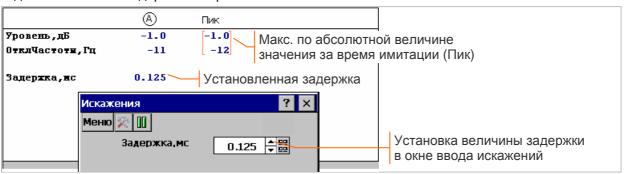
¹ Не производится обнаружение и индикация ошибок Битов.

² Используется тип последовательности, не предназначенный для измерения ошибок Битов.

³ В случае отсутствия результата измерения, вместо значения параметра выводится символ "-".

6.11.4 Имитация задержки

Режим "Имитация задержки" должен быть установлен в главном окне **до включения** измерительного модуля.

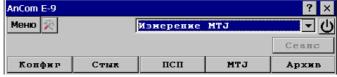


Формирование задержки производится в одном канале (А или В) в соответствии со схемой подключения 3. Обеспечивается задержка передачи измерительного сигнала, поступающего на вход анализатора и синхронно воспроизводимого им на выходе, а также светодиодная индикация ошибок Кода и аварийных сигналов LOS, AIS. Дополнительно может выполняться анализ формы импульса в канале А.

Настройка анализатора, необходимая для имитации задержки, осуществляется с помощью загрузки ранее созданной конфигурации или в окнах настройки, которые открываются кнопками главного окна:

- Стык настройка передатчика и приемника Е1 (канал А или В, режим "Транзит", "НЕСТР");
- Искажения устанавливается величина задержки от 0.125 мс до 250 мс с шагом 0.125 мс.

Формирование задержки начинается после включения измерительного модуля кнопкой . Текущие и максимальные значения уровня и отклонения частоты входного сигнала, а также заданная величина задержки отображаются в главном окне:



Изменение величины задержки во время ее формирования сопровождается серией ошибок в сигнале, воспроизводимом на выходе.

6.11.5 Измерение максимально допустимого входного джиттера (МТЈ)

Режим "Измерение МТЈ" должен быть установлен в главном окне **до включения** измерительного модуля:

Измерение выполняется в одном канале (А или В) в соответствии со схемой

подключения 2. Анализатор формирует на входе объекта сигнал с введенным синусоидальным джиттером и измеряет показатели ошибок на выходе объекта.

В процессе измерений обеспечивается увеличение частоты синусоидального джиттера от 16 Гц до 100 кГц в соответствии с выбранной последовательностью частот. Для каждой частоты определяется максимально допустимый джиттер по критерию обнаружения не более двух секунд с ошибками в течение 30-секундного измерительного интервала¹.

Настройка анализатора, необходимая для выполнения измерений, осуществляется с помощью загрузки ранее созданной конфигурации или в окнах настройки, которые открываются кнопками главного окна:

- Стык настройка передатчика и приемника потока Е1 (канал А или В, режим "Терминал");
- **ТЧ** если нужно освободить КИ для передачи испытательной последовательности;
- ПСП должны быть заданы совпадающие КИ передачи и приема²;
- **MTJ** настройка измерений MTJ: выбор последовательности частот формирования джиттера и способа проверки объекта на соответствие шаблону максимально допустимого входного джиттера, заданному в рек. MCЭ-T G.823 (Table 16).

Окно настройки измерений MTJ открывается кнопкой **MTJ** до *начала сеанса* измерений, во время сеанса данная кнопка открывает окно результатов измерения MTJ.

50 AnCom E-9

_

¹ Данный критерий соответствуют приказу Минсвязи РФ №92 от 10.08.96г.

² Тип последовательности должен соответствовать скорости 2048 кбит/с: 2^15-1;

Окно настройки измерений MTJ содержит следующие параметры:

- Количество частот количество частот формирования джиттера; возможные значения: 39, 9, 5.
- Начать с частоты, Гц установка начальной частоты для ограничения диапазона измерений; завершить сеанс на требуемой частоте можно в ручном режиме.
- Макс.ES допустимое количество секунд с ошибками за время обнаружения ошибок; возможные значения: 0, 1, 2.
- Интервал, с время обнаружения ошибок при заданной амплитуде джиттера; возможные значения: 10, 20, 30 с.
- Быстрая оценка допустимого джиттера оценка одним из двух способов формирования джиттера:
- По максимальным амплитудам на каждой частоте формируемый джиттер близок к максимально возможному для анализатора значению;
- о По шаблону G.823 (Table 16) на каждой частоте формируемый джиттер соответствует шаблону, заданному в рек. МСЭ-Т G.823 (Table 16).

Измерительный модуль включается кнопкой . В главном окне выводится сообщение "Тестер E1" и отображаются измеренные значения параметров сигнала. После включения можно изменить любые параметры настройки анализатора, кроме режима измерений.

Сеанс автоматического измерения МТЈ начинается нажатием кнопки **Сеанс**. Анализатор выполняет формирование джиттера и измеряет количество секунд с ошибками¹. Параметры настройки анализатора до завершения сеанса изменить нельзя.

Дата и время начала сеанса измерений выводится в главном окне. Результаты сохраняются в архиве и могут быть проанализированы на соответствие шаблону, заданному в рек. МСЭ-Т G.823. Шаблон представлен в Приложении 12.

Окно результатов измерения MTJ открывается кнопкой **MTJ** главного окна после начала сеанса или после открытия на просмотр сеанса из архива.

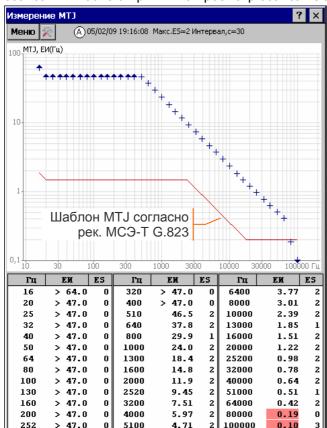


Диаграмма "МТЈ, ЕИ(Гц)" отображает зависимость максимально допустимого входного джиттера от частоты. Значения джиттера и частоты отображаются в логарифмическом масштабе.

Настройка измерений МТЈ

Начать с частоты, Гц 16

Makc, ES

Интервал, с.

Измерения на 39-и частотах

По максимальным амплитудам

Количество частот: 39

Частоты,Гц : 16, 20, 25, 32, 40, 50, 64, 80, 100, 130, 160, 200, 252, 320, 400, 510, 640,

800, 1000, 1300, 1600, 2000, 2520, 3200, 4000,

5100, 6400, 8000, 10000, 13000, 16000, 20000, 25200, 32000, 40000, 51000, 64000, 80000,

30

Быстрая оценка допустимого джиттера

(A)

Используемые обозначения:

- "↑" допустимый джиттер больше максимального значения, формируемого анализатором;
- "+" максимально допустимый джиттер;
- "↓" допустимый джиттер меньше отображаемого на диаграмме значения.

Табличное представление:

- "Гц" частота формирования джиттера;
- "ЕИ" максимально допустимый джиттер (не соответствующие шаблону значения в таблице выделены красным цветом);
- "ES" количество секунд с ошибками за интервал времени обнаружения.

Обозначения на диаграмме в режиме быстрой оценки допустимого джиттера:

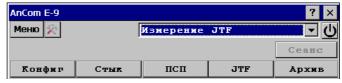
- "+" допустимый джиттер;
- "—" обнаружены ошибки².

Сеанс может быть завершен в ручном

режиме с помощью кнопки Сеанс или автоматически, по окончанию измерений.

AnCom E-9 51

.


¹ Ввод дефектов и ошибок, разрешенный в окне "ДефОш", автоматически прекращается.

² Выделяются в таблице желтым цветом в режиме оценки по максимальным амплитудам.

6.11.6 Измерение передаточной характеристики джиттера (JTF)

Режим "Измерение JTF" должен быть установлен в главном окне *до включения* измерительного модуля:

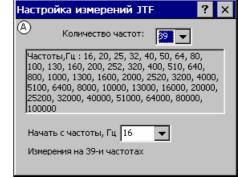
Измерение выполняется в одном канале (А или В) в соответствии со схемой

подключения 2. Анализатор формирует на входе объекта сигнал с введенным синусоидальным джиттером и измеряет размах джиттера на выходе объекта.

В процессе измерений обеспечивается увеличение частоты синусоидального джиттера от

В процессе измерений обеспечивается увеличение частоты синусоидального джиттера от 16 Гц до 100 кГц в соответствии с выбранной последовательностью частот. Размах формируемого джиттера (Размах,ЕИ) зависит от частоты согласно шаблону, заданному в рек. МСЭ-Т G.823 (Table 16). Для каждой частоты измеряется джиттер на выходе объекта (ДжСелект,ЕИ) и вычисляется коэффициент передачи:

JTF,дБ = 20lg(ДжСелект,ЕИ / Размах,ЕИ).


Настройка анализатора, необходимая для выполнения измерений, осуществляется с помощью загрузки ранее созданной конфигурации или в окнах настройки, которые открываются кнопками главного окна:

- Стык настройка передатчика и приемника потока Е1 (канал А или В, режим "Терминал");
- ТЧ если нужно освободить КИ для передачи испытательной последовательности;
- ПСП должны быть заданы совпадающие КИ передачи и приема;
- **JTF** настройка измерений JTF: выбор последовательности частот формирования джиттера.

Окно настройки измерений JTF открывается кнопкой **JTF** до начала сеанса измерений, во время сеанса данная кнопка открывает окно результатов измерения JTF. Окно содержит следующие параметры настройки:

- "Количество частот" количество частот формирования джиттера; возможные значения: 39, 9, 5.
- "Начать с частоты, Гц" установка начальной частоты для ограничения диапазона частот; завершить сеанс на требуемой частоте можно в ручном режиме.

Измерительный модуль включается кнопкой . В главном окне выводится сообщение "Тестер Е1" и отображаются измеренные значения параметров сигнала. После включения можно изменить любые параметры настройки анализатора, кроме режима измерений.

Измеренные значения параметров ДжСелект,ЕИ и JTF,дБ отображаются в окне анализа джиттера. Частота и размах синусоидального джиттера на входе объекта задаются в окне ввода искажений, что обеспечивает возможность измерения передаточной характеристики джиттера в ручном режиме. Продолжительность измерений на каждой частоте формирования джиттера должна быть не менее 30 с.

Сеанс автоматического измерения JTF начинается нажатием кнопки **Сеанс**. Анализатор формирует на входе объекта измерений синусоидальный джиттер в соответствии с выбранной последовательностью частот, селективно измеряет джиттер на выходе и определяет зависимость коэффициента передачи от частоты.

Параметры настройки анализатора до завершения сеанса изменить нельзя.

Дата и время начала сеанса измерений выводится в главном окне. Результаты сохраняются в архиве и могут быть проанализированы на соответствие шаблону, выбранному в окне измерения JTF¹. Возможные шаблоны представлены в Приложении 13.

52 AnCom E-9

-

¹ Выбор шаблона может быть изменен во время измерений или при просмотре архива.

Окно измерения JTF открывается кнопкой **JTF** главного окна после начала сеанса или после открытия на просмотр сеанса из архива.

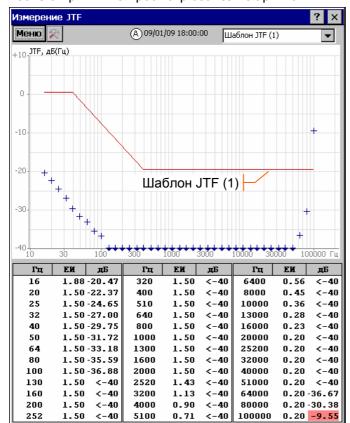


Диаграмма "JTF, дБ(Гц)" отображает зависимость коэффициента передачи джиттера от частоты. Значения частоты отображаются в логарифмическом масштабе.

Используемые обозначения:

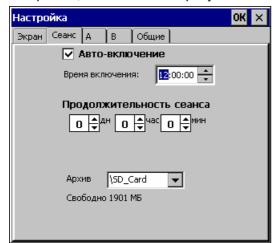
- "+" значение коэффициента передачи;
- "↓" коэффициент передачи меньше отображаемого на диаграмме значения.

Табличное представление:

- "Гц" частота формирования джиттера;
- "ЕИ" -размах джиттера на входе объекта;
- "дБ" значение коэффициента передачи (не соответствующие шаблону значения в таблице выделены красным цветом).

Сеанс может быть завершен в ручном режиме с помощью кнопки Сеанс или автоматически, по окончанию измерений.

7. Сеансы измерений


Анализатор отображает после включения измерительного модуля текущие значения счетчиков ошибок и параметры входного сигнала. Доступны для просмотра данные в КИ, результаты анализа каналов ТЧ, джиттера и формы импульса, но результаты не записываются в архив и не отображаются в виде отчетов и временных диаграмм. Данный режим используется для настройки измерительных каналов анализатора и быстрой оценки состояния объекта измерений.

Вычисление и нормирование показателей ошибок, формирование отчетов, построение временных диаграмм, запись результатов в архив осуществляется во время сеансов измерений.

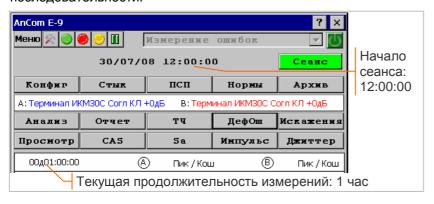
В режиме измерения ошибок анализатор сохраняет промежуточные результаты, соответствующие продолжительности измерений 15 минут, 1 час, 2 часа, 1 сутки, 7 суток. Во время выполнения измерений промежуточные результаты анализируется на соответствие заданным нормам. В случае получения достоверного решения о выполнении или невыполнении нормы сеанс измерений может быть прерван по команде оператора.

7.1 Управление сеансами

Время начала и продолжительность сеанса измерений задаются на вкладке "Сеанс" окна настройки¹, как показано на рисунке:

Автоматическое начало сеанса в заданное время обеспечивает установка флажка "Авто-включение".

Сеанс измерений будет закончен через заданное время, если указана ненулевая продолжительность сеанса.


Минимальная продолжительность сеанса измерения ошибок, необходимая для записи результатов в архив - 1 мин, информация о сеансах меньшей продолжительности в архиве не сохраняется². Архив размещается на SD-Card.

Закрытие окна настройки без нажатия кнопки ок означает отмену редактирования параметров сеанса.

Сеанс измерений начинается нажатием кнопки **Сеанс** в главном окне. После нажатия кнопка получает зеленый цвет, что соответствует началу сеанса. Если установлен флажок "Автовключение", кнопка после нажатия получает желтый цвет, что соответствует ожиданию времени начала сеанса. В главном окне отображается строка "Жду начала сеанса" и текущие значения измеряемых параметров, ожидание может быть прервано нажатием кнопки **Сеанс**.

При достижении заданного времени кнопка приобретает зеленый цвет, что соответствует началу сеанса. В главном окне отображается время начала сеанса и текущая продолжительность измерений, как показано на рисунке: начало в 12:00:00, продолжительность 00д01:00:00 (1 час):

Во время сеанса измерений и во время ожидания начала сеанса невозможно изменить структуру сигнала E1, а также параметры передатчика и приемника испытательной последовательности.

Сеанс может быть прекрашен:

- нажатием кнопки Сеанс в ручном режиме;
- автоматически, по достижении заданной продолжительности.

¹ Окно настройки открывается кнопкой 💹 из главного окна.

² В режиме анализа кабеля возможна запись сеансов продолжительностью менее 1 мин.

7.2 Отчеты о измерении показателей ошибок

7.2.1 Формирование отчетов

Окно формирования отчетов открывается кнопкой **Отчет** главного окна, если выполняется сеанс измерения ошибок или открыт сеанс из архива.

Заголовок окна соответствует режиму измерений, верхняя строка содержит дату/время начала сеанса и продолжительность измерений:

Обеспечивается формирование следующих отчетов:

- 1. "Параметры сигнала" содержит минимальные и максимальные значения параметров Уровень,дБ, ОтклЧастоты,Гц, Джиттер,ЕИ, ДжиттерПФ1,ЕИ, ДжиттерПФ2,ЕИ;
- 2. "Количество ошибок и секунд с ошибками" содержит количество ошибок, коэффициент ошибок (Кош), количество секунд с ошибками, процент секунд (%c) с ошибками Битов, Кода, FAS, MFAS, CRC4, E-bit, а также количество проскальзываний Цикл+, Цикл -;
- 3. "Количество секунд с дефектами" содержит количество секунд и процент секунд (%c) с дефектами LOS, AIS, LOF, LOM CAS, LOM CRC, RAI, MRAI, PL;
- 4. "Показатели M.2100 и G.821 по BER" содержит количество и процент секунд готовности (AS), неготовности (US), количество и процент секунд с ошибками (ES), количество и процент секунд пораженных ошибками (SES), а также решение о соответствии заданным нормам;
- 5. "Показатели M.2100 по FAS и RAI" содержит количество и процент секунд готовности (AS), неготовности (US), количество и процент секунд с ошибками (ES), количество и процент секунд пораженных ошибками (SES), а также решение о соответствии заданным нормам;
- 6. "Показатели M.2100 по CRC4 и E-bit" содержит количество и процент секунд готовности (AS), неготовности (US), количество и процент секунд с ошибками (ES), количество и процент секунд пораженных ошибками (SES), а также решение о соответствии заданным нормам;;
- 7. "Показатели G.826 по CRC4 и E-bit" содержит количество и процент секунд готовности (AS), неготовности (US), количество и процент секунд с ошибками (ES), количество и процент секунд пораженных ошибками (SES), количество блоков с фоновыми ошибками (BBE) а также решение о соответствии заданным нормам;
- 8. "Итоговый отчет по приказу № 92" содержит решение о соответствии заданным нормам, принятое по результатам измерений в канале A и канале B.


Решение о соответствии нормам включается в отчеты 1, 4 - 8, если установлен флажок "Нормирование по приказу № 92" в окне нормирования, которое открывается кнопкой **Нормы** из главного окна или окна отчетов.

В окне нормирования необходимо установить вид испытаний: долговременные или оперативные. При оперативных испытаниях отчеты формируются за время, заданное в поле "Продолжительность".

Решение принимается по результатам измерения каждого нормируемого параметра:

- Принят параметр соответствуют норме;
- Не принят параметр не соответствуют норме;
- Условно принят параметр ES или SES больше S1, но меньше S2; достоверное решение не принято, нужно увеличить продолжительность оперативных измерений.

Канал А или В принят, если все нормируемые параметры в нем соответствуют норме. Канал не принят, если хотя бы один параметр не соответствует норме. Канал условно принят, если условно принят хотя бы один параметр, а остальные соответствуют норме.

Сброс флажка "Нормирование по приказу № 92" запрещает принятие решений, все отчеты формируются за полное время сеанса измерений.

7.2.2 Нормирование

Окно нормирования показателей ошибок в соответствии с приказом Минсвязи РФ №92 от 10.08.96г открывается кнопкой **Нормы** главного окна или окна отчетов. Необходимо задать следующие характеристики сеанса и объекта измерений:

- Нормирование по Приказу № 92 флажок:
 - о **№** разрешает принятие решений о соответствии заданным нормам; при оперативных измерениях отчеты формируются за время, заданное в поле "продолжительность";
 - □ запрещает принятие решений, отчеты формируются за полное время сеанса измерений;
- Параметры сигнала флажок:
 - 🖯 🔽 разрешает нормирование отклонения частоты и джиттера входного сигнала;
 - о □ выполнение указанных норм не учитывается при формировании отчетов;
- Вид испытаний:
 - о Долговременные измерения не менее 30 дней;
 - о Ввод в эксплуатацию оперативные измерения, от 15 мин до 7 дней;
 - о Ввод после ремонта оперативные измерения, от 15 мин до 7 дней;
- Продолжительность оперативных измерений: 15 мин, 1 час, 2 часа, 1 день, 7 дней;
- Международное соединение флажок, установка разрешает задание доли норм для участка международного соединения в процентах от международного соединения L = 27500км;
- Система передачи флажок, определяет выбор коэффициента k при вычислении пороговых значений показателей ошибок¹:
 - о

 □ выбирается коэффициент для испытаний системы передачи:
 - $_{\circ}$ \square выбирается коэффициент для испытаний сетевого тракта или участка;
- Готовность в одном направлении флажок определения периода неготовности:

 - \Box период неготовности тракта определяется как период, когда хотя бы одно из его направлений находится в состоянии неготовности 2 ;
- Maкc. USR,% максимальное допустимое значение коэффициента времени неготовности при долговременных измерениях и оперативных измерениях продолжительностью 7 дней;
- Доля нормы. флажок, определяет способ задания норм:
 - Б задается доля нормы в процентах от международного соединения L = 27500км;
 - 。 □ задается количество, длина и характеристики отдельных участков соединения;
- Число участков поле задания числа участков соединения³;
- Характеристики участков соединения в виде таблицы:
 - о тип: МПС, ВЗПС, СМП;
 - о длина участка, км;
 - о признаки наличия на участке РСП или ССП.

Характеристики нормирования можно изменять до начала сеанса, в процессе измерений и после окончания сеанса. Заданные характеристики нормирования сохраняются в архиве вместе с результатами сеанса измерений.

На основании введенных характеристик вычисляются нормы показателей ошибок:

- пороговые значения ESR, SESR, BBER, USR в режиме долговременных измерений;
- пороговые значения ES, SES в режиме оперативных измерений⁴:
 - S1 и S2 при продолжительности измерений менее 7 дней;
 - о BISO при продолжительности измерений 7 дней;
- пороговое значения US⁵.

Если продолжительность сеанса измерений меньше заданной при нормировании, в отчет выводится сообщение "Измерения не закончены".

56 AnCom E-9

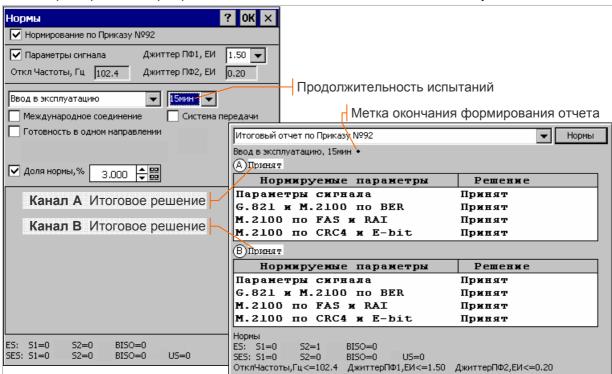
_

¹ Согласно приказу Минсвязи РФ №92, Таблица 4.6.

² Согласно приказу Минсвязи РФ №92 и рекомендациям МСЭ-Т G.821, G.826, M.2100.

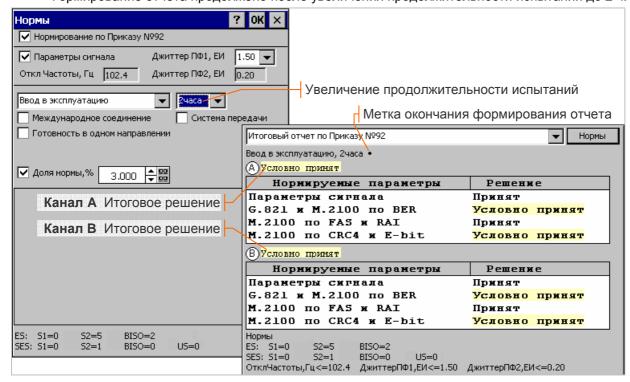
³ Поле доступно для редактирования, если сброшен флажок "Доля нормы,%".

⁴ Согласно приказу Минсвязи РФ №92 при измерениях на соответствие оперативным нормам продолжительностью 15 мин не должно быть ошибок и случаев неготовности (п. 6.2.2).


⁵ Согласно приказу Минсвязи РФ №92 при измерениях на соответствие оперативным нормам продолжительностью от 15 мин до 24 часов не должно быть случаев неготовности (п. 6.2.2).

7.2.3 Итоговый отчет по Приказу №92

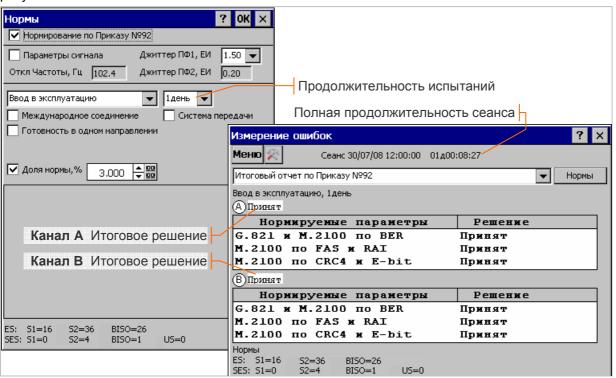
Итоговый отчет содержит условия испытаний, нормы, решение о соответствии нормам отклонения частоты и джиттера входного сигнала¹, решения о соответствии нормам показателей ошибок согласно рекомендациям МСЭ-Т, итоговое решение о соответствии нормам, принятое по результатам измерений в канале A и канале B.


Следующий пример демонстрирует формирование серии отчетов для сеанса оперативных измерений по вводу в эксплуатацию, начатого 30/07/2008 в 12:00:00. Сеанс выполнялся без ограничения продолжительности до получения достоверного решения о результате испытаний.

Характеристики нормирования и отчет о испытаниях в течение 15 минут:


Метка окончания формирования отчета «●» выводится, когда продолжительность сеанса становится больше, чем заданная в окне нормирования продолжительность испытаний. Содержимое отчета с этого момента не изменяется, как при остановке вывода на экран.

Формирование отчета продолжено после увеличения продолжительности испытаний до 2 ч:

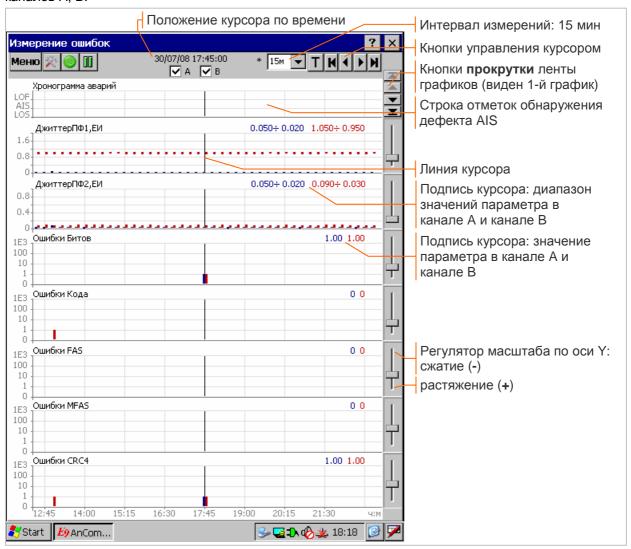


¹ Нормируются, если установлен флажок "Параметры сигнала".

После 2 часов испытаний сформировано решение "Условно принят", причиной которого являются показатели ошибок, измеренные согласно рекомендации МСЭ-Т М.2100. Критические параметры, на основании которых сформировано решение, детализирует отчет "Показатели М.2100 по CRC4 и E-bit", представленный ниже на рисунке:

Продолжительность испытаний была увеличена с целью получения достоверного решения. Характеристики нормирования и отчет о испытаниях в течении 1 суток представлены ниже на рисунке:

Сеанс прекращен нажатием кнопки **Сеанс** в ручном режиме после получения достоверного решения¹. Полная продолжительность сеанса 1 день 8 мин 27 с. Все промежуточные результаты (за 15 мин, 2 часа, 1 день испытаний) сохранены в архиве и могут быть просмотрены в окне отчетов, как показано выше.


¹ Открыт для просмотра результатов сеанс из архива, поэтому в отчете отсутствует метка «●», которая выводится только во время измерений.

7.3 Анализ временных диаграмм

Окно анализа временных диаграмм открывается кнопкой **Анализ** главного окна, если выполняется сеанс измерений или открыт сеанс из архива. Обеспечивается совместный вывод хронограммы аварий, гистограмм распределения ошибок и секунд с ошибками, а также временных диаграмм параметров сигнала.

7.3.1 Отображение временных диаграмм

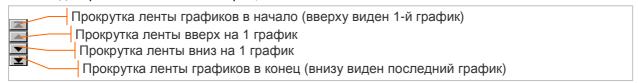
Последовательность вывода графиков соответствует последовательности имен отображаемых параметров на вкладке "Диаграммы" в окне настройки¹. Окно временных диаграмм представлено ниже на рисунке, флажки "А", "В" разрешают отображение результатов измерений каналов А. В:

Все графики имеют общую горизонтальную ось - время измерений. Интервал измерений выбирается из ряда значений: 1 с, 1 мин, 15 мин, 1 час, 1 день. При первом открытии окна на экране отображается весь период измерений.

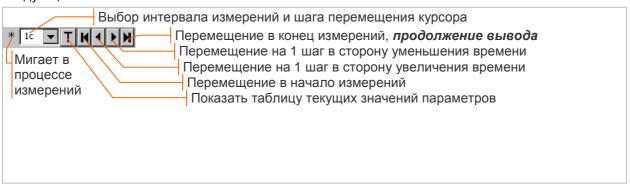
Хронограмма аварий выводится в верхней части окна и сохраняется при прокрутке ленты графиков. Хронограмма показывает факт обнаружения дефекта на интервале измерений. Обнаружение дефекта изображается столбиком в соответствующей строке. На секундной хронограмме высота всех столбиков постоянная. Для интервалов больше 1 с полная высота столбика соответствует обнаружению дефекта в каждую секунду, половина высоты соответствует обнаружению дефекта не во всех секундах.

Гистограмма показывает количество событий (ошибок, секунд с ошибками, секунд с обнаружением дефектов, секунд пораженных ошибками и т.п.) на интервале, равном шагу по оси времени. Количество событий изображается высотой столбика и подписью курсора.

Масштаб вертикальной оси гистограммы логарифмический, подписи делений: 0, 1, 10, 100, 1E3, и т.д. Подпись деления 1E3 означает 1·10³.


AnCom E-9 59

_


¹ Окно настройки открывается кнопкой **2**

Временная диаграмма показывает значение параметра в каждую секунду измерений или диапазон значений для интервалов больше 1с. Масштаб вертикальной оси линейный.

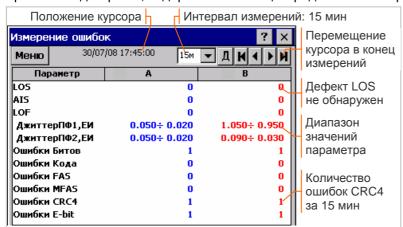
Прокрутка ленты графиков в случае, если количество отображаемых графиков больше, чем можно одновременно вывести на экран, обеспечивается кнопками:

Курсор перемещается касанием требуемой точки графика стилусом или с помощью следующих кнопок:

Перемещение курсора в процессе измерений прекращает обновление диаграмм, кнопка обеспечивает **продолжение вывода** измеренных значений.

Подпись курсора может иметь вид:

- Y точное значение параметра при заданном положении курсора;
- Ymax ÷ Ymin диапазон значений параметра на интервале, заданном положением курсора.


Формат подписи курсора гистограммы изменяется при нажатии на подпись, например: 4152 изменяется на 4.15ЕЗ. Подпись курсора "-" означает отсутствие измеренных значений параметра.

Масштабирование по оси Y выполняется с помощью регуляторов масштаба или касанием нижней части вертикальной оси (растяжение) или верхней части (сжатие), как показано на рисунке:

7.3.2 Таблица текущих значений

Таблица содержит значения всех параметров за интервал измерений, соответствующий положению курсора временных диаграмм. Таблица открывается кнопкой **Т** окна анализа временных диаграмм, содержимое таблицы представлено на рисунке:

Признак обнаружения аварийного сигнала (дефекта) может иметь в таблице значения:

- "I" аварийного сигнал (дефект) обнаружен в каждую секунду интервала измерений;
- "1" дефект обнаружен не в каждую секунду;
- "0" дефект не обнаружен.

Диапазон значений параметра Ymax ÷ Ymin (уровень, джиттер, отклонение частоты) выводится при интервале измерений больше 1 с.

Для показателей ошибок (ошибки, секунды ES, секунды SES) таблица содержит количество событий на интервале измерений.

60 AnCom E-9

_

¹ Перемещение курсора невозможно, если вывод на экран остановлен нажатием кнопки **Ш**

Отсутствие измеренных значений обозначается символом "-".

Кнопки перемещения курсора аналогичны используемым в окне временных диаграмм. Перемещение курсора в процессе измерений прекращает обновление таблицы текущих значений, кнопка обеспечивает **продолжение вывода** измеренных значений.

Таблица измерений параметров для печати формируется программой E-9 Commander в соответствии с описанием в разделе 10.4.4

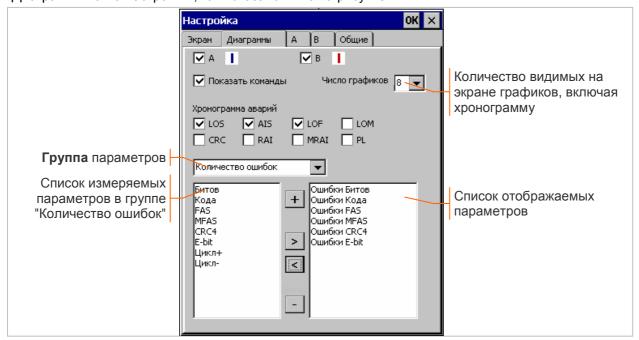
7.3.3 Гистограммы показателей ошибок G.821, G.826, M.2100

Гистограммы показателей ошибок ES, SES, US, BBE отображаются в окне анализа временных диаграмм совместно с любыми другими измеряемыми параметрами с интервалом 1 с, 1 мин, 15 мин, 1 час, 1 день.

Показатели ошибок вычисляются с допущением следующих начальных и конечных условий¹:

- канал или тракт находится в состоянии готовности в момент начала сеанса измерений;
- готовность канала или тракта, определенная в момент завершения сеанса, не изменяется в случае обнаружении ошибок после завершения сеанса измерений.

При анализе причин несоответствия заданным нормам можно использовать временные диаграммы критических параметров с максимальным разрешением по времени - 1 с:


Изменение масштаба вертикальной оси гистограмм ES, SES, US невозможно, если установлен интервал измерений 1 с, значение каждого из показателей в данном случае может быть 0 или 1.

Дополнительно в окне анализа временных диаграмм обеспечивается отображение гистограмм распределения секунд с обнаружением дефектов и ошибок за полное время измерений **без учета готовности**.

¹ В рекомендациях МСЭ-Т G.821, G.826, М.2100 отсутствуют начальные условия для определения готовности.

7.3.4 Выбор параметров

Выбор параметров для отображения в окне временных диаграмм производится на вкладке "Диаграммы" окна настройки¹, как показано ниже на рисунке:

Флажки "А", "В" разрешают отображение результатов измерений каналов А, В. Рядом с флажком представлен цвет вывода на экран соответствующих результатов измерений.

Флажок "Показать команды" разрешает вывод на экран протокола команд оператора в дополнение к числу видимых на экране графиков.

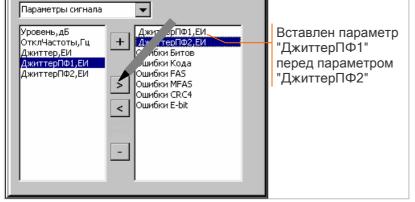
Поле "Число графиков" обеспечивает выбор количества графиков на экране, включая хронограмму.

Флажки "LOS", "AIS", "LOF", "LOM CAS", "LOM CRC", "RAI", "MRAI", "PL" разрешают вывод на хронограмму отметок обнаружения соответствующих аварийных сигналов;

Группа параметров и список измеряемых параметров предназначены для указания имен параметров, графики которых требуется отобразить на экране.

Список отображаемых параметров содержит имена всех параметров, графики которых отображаются на экране, последовательность имен соответствует последовательности графиков.

Выбор параметра для отображения осуществляется занесением его имени в список отображаемых параметров.


Кнопка + добавляет все имена из списка измеряемых параметров в список отображаемых.

Кнопка > добавляет выбранный в списке измеряемый параметр в список отображаемых.

Кнопка < удаляет выбранный отображаемый параметр из списка.

Кнопка | - | удаляет все имена из списка отображаемых параметров.

Параметр можно добавить в середину списка, как показано ниже на рисунке, если выделить отображаемый параметр, перед которым нужно произвести вставку, до нажатия кнопки >:

Количество отображаемых параметров может быть больше числа графиков, видимых на экране, в этом случае обеспечивается прокрутка ленты графиков.

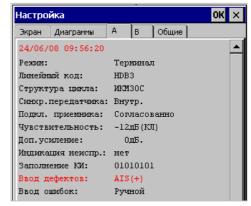
Если список отображаемых параметров пустой, графики в окне анализа отсутствуют.

¹ Окно настройки открывается кнопкой 🔼.

7.3.5 Протокол команд оператора

Протокол команд оператора выводится в верхней части окна временных диаграмм и сохраняется на экране при прокрутке графиков. Вывод протокола разрешается установкой флажка "Показать команды" на вкладке "Диаграммы" в окне настройки.

Команды оператора отображаются отметками в соответствующих строках протокола:

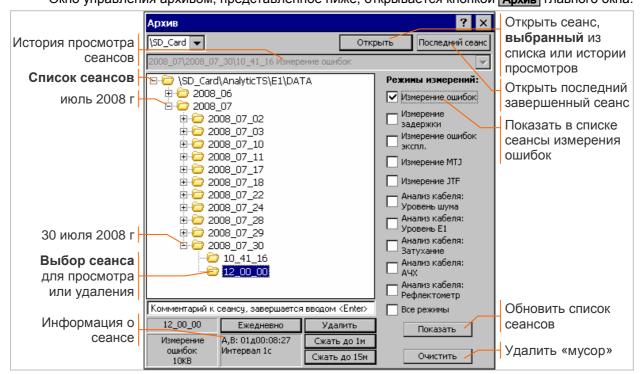

- ош начало и прекращение автоматического или ручного ввода ошибок с помощью желтой кнопки
- деф начало и прекращение ввода дефектов с помощью красной кнопки
- иск изменение отклонения частоты, параметров ввода джиттера или помехи;
- тч изменение настройки в окне анализа ТЧ;
- кнл изменение S-битов FAS/NFAS, битов CAS или параметров ввода дефектов и ошибок.

Строки протокола отсутствуют, если командь соответствующего типа не выдавались оператором.

Касание стилусом строки протокола обеспечивает перемещение курсора к ближайшей отметке команды оператора. При этом в окне параметров настройки измененные командой параметры и время их изменения выделяются красным цветом, как показано на рисунке:

Окно параметров настройки открывается кнопкой [24], измененные оператором параметры могут отображаться на вкладках "А", "В", "Общие", как показано на рисунке.

Команда ввода AIS ввода ошибок ввода ошибок хронограмма аварий LOF AIS LOS Ошибки Битов О Курсор перемещен касанием строки к команде ввода AIS



7.4 Архив измерений

Архив измерений создается в каталоге \SD_Card\AnalyticTS\E1\DATA при первом вызове программы. Минимальная продолжительность сеанса измерения ошибок, необходимая для записи результатов в архив – 1 мин, информация о сеансах меньшей продолжительности в архиве не сохраняется.

7.4.1 Управление архивом

Окно управления архивом, представленное ниже, открывается кнопкой Архив главного окна:

Открыть для просмотра результатов можно последний завершенный сеанс, выбранный из списка сеанс или сеанс из истории просмотров (выбор сеанса в списке, как показано выше на рисунке, запрещает доступ к истории просмотра сеансов).

Список сеансов обеспечивает выбор сеанса для просмотра или удаления. Список содержит информацию только о тех сеансах, которые соответствуют установленным флажкам режимов измерений, в случае переустановки флажков необходимо обновить список нажатием кнопки Показать.

В нижней части окна выводится комментарий и идентификационная информация для выделенного в списке сеанса: время начала, режим измерений, использование каналов А и В, продолжительность измерений, интервал сохранения результатов. Выводятся также признаки наличия результатов анализа формы импульса (Им), джиттера (Дж), параметров канала ТЧ (ТЧ) или характеристик кабеля (Спектр, АЧХ, Рефлектограмма).

Комментарий к сеансу редактируется с помощью экранной клавиатуры, как текстовая строка. Комментарий сохраняется в архиве измерений после ввода завершающего <Enter>.

Просмотр, удаление и сжатие результатов сеанса обеспечивается кнопками:

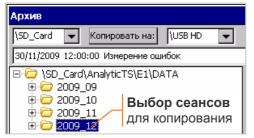
- Открыть открывает для просмотра сеанс, выбранный из списка или из истории просмотров.
- Последний сеанс открывает для просмотра последний завершенный сеанс.
- **Ежедневно** открывает для просмотра результаты нескольких сеансов измерений, ежедневно выполнявшихся в одно и то же время для выявления долгосрочной статистической зависимости. Просмотр временных диаграмм обеспечивается с шагом по времени в 1 сеанс.
- **Удалить** удаляет результаты сеанса измерений, дня измерений, месяца измерений или весь архив; удаление из архива выполняется **до включения** измерительного модуля.
- **Сжать до 1м** уменьшает размер хранящихся в архиве результатов сеанса за счет увеличения интервала сохранения до 1 мин. После сжатия временные диаграммы можно просматривать с шагом от 1 мин до 1 суток.
- **Сжать до 15м** уменьшает размер хранящихся в архиве результатов сеанса за счет увеличения интервала сохранения до 15 мин. После сжатия временные диаграммы можно просматривать с шагом от 15 мин до 1 суток.

Открытие сеанса сопровождается выводом информации о режиме измерений, времени начала и продолжительности сеанса в главном окне, как показано в разделе 6.1.1. Данные из архива отображаются в окнах программы вместо результатов текущих измерений. Окна просмотра результатов недоступны, если во время сеанса не записывались соответствующие данные.

Результаты анализа каналов ТЧ, формы импульса, джиттера отображаются в соответствии с описанием в разделах 6.7, 6.8, 6.9, 6.10.

Формирование отчетов и анализ временных диаграмм выполняется согласно описанию в разделах 7.2, 7.3.

Протокол команд оператора отображается в соответствии с описанием в разделе 7.3.5.


Результаты анализа кабеля отображаются согласно описанию в разделах 8.3.1, 8.4.1, 8.5.1.

Сеанс из архива можно открыть во время выполнения измерений. После закрытия сеанса из архива будет продолжено отображение результатов текущих измерений.

Возможно накопление в архиве незавершенных сеансов измерений, например при аварийном выключении анализатора. Удаление «мусора» из архива и упорядочение служебных данных выполняется **до включения** измерительного модуля с помощью кнопки **Очистить**.

7.4.2 Запись результатов измерений на USB Flash

Результаты из архива анализатора можно записать на USB Flash для переноса в архив ПК. USB Flash подключается к разъему USB Host на нижней панели анализатора, после чего в окне управления архивом появляется кнопка Копировать на: и поле назначения USB HD ▼:

Кнопка обеспечивает копирование выделенных в списке сеансов на внешний накопитель в директорию $\USB\ HD\AnalyticTS\E1\DATA^1$. Повторное копирование на USB Flash замещает результаты, сохраненные ранее.

Скопированные результаты можно просмотреть или удалить средствами управления архивом, если вместо "\SD_Card" указать размещение архива на "\USB HD".

Внимание! При копировании результатов нескольких анализаторов на одну USB Flash директорию \USB HD\AnalyticTS\E1\DATA от предыдущего анализатора нужно *переименовать* с помощью Windows Explorer (в DATA1, DATA2 и т.д) перед копированием со следующего анализатора.

64 AnCom E-9

-

¹ Результаты за 7 суток измерений по двум каналам с интервалом 1 с (40МБ) копируются ~1 мин.

8. Анализ кабеля

Анализатор обеспечивает измерение параметров кабелей, предназначенных для передачи стыкового сигнала E1:

Измери- тельный режим	Параметры измерительного режима							
	Настройка генератора	Разъемы	Дополнительная настройка	Измеряемый параметр	Способ измерения			
Уровень шума	Нет	E1-A Rx	Усиление ¹ : -12, 0, 10, 20, 30, 40 дБ	Спектр, дБм(кГц)	БПФ ² входного сигнала			
				Уровень, дБм	СКЗ ³ уровня в полосе 104096 кГц			
Уровень Е1	Нет	E1-A Rx	Усиление: -12; 0; 10; 20; 30; 40 дБ	Спектр, дБм(кГц)	БПФ входного сигнала			
				Уровень Е1, дБм	СКЗ уровня в полосе 104096 кГц			
Затухание	Гармонический сигнал (SIN):	E1-A Tx E1-A Rx	Усиление: -12; 0; 10; 20; 30; 40 дБ	Спектр, дБм(кГц)	БПФ входного сигнала			
	Уровень	Ι,		Затухание, дБ	Разность уровней генератора и измеренного			
	+10 дБм, Частота			Защищенность, дБ	Разность уровней сигнала и шума в полосе 104096 кГц			
	1024 кГц			Частота, кГц	По спектральному положению			
АЧХ	Многочастотный Е1-А Тх сигнал (МЧС): E1-A Rx	Усиление: -12; 0; 10;	Спектр, дБм(кГц)	БПФ входного сигнала				
	Уровень 0 дБм, Диапазон частот 404080 кГц, шаг 40 кГц		20; 30; 40 дБ	АЧХ, дБ(кГц)	Разность уровней генератора и измеренного на каждой частоте МЧС			
Рефлекто- метр	Псевдослучай- ный сигнал (ПСС):	E1-A Rx	Скорость распространения сигнала ⁴ 50150 м/мкс	Рефлектометр, %(м)	Развертка по длине линии относительного уровня напряжения отраженного сигнала.			
	Уровень +10 дБм		Длительность импульса ⁵ : 12; 24; 50; 100 нс		Максимум 100% всегда на нулевой отметке длины			

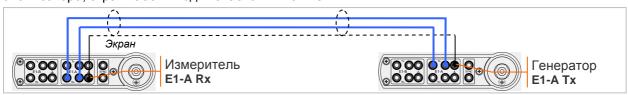
AnCom E-9 65

¹ Для согласования измерительного диапазона анализатора с уровнем измеряемого сигнала следует выбрать величину усиления или ослабления. Значение «-12дБ» обеспечивает ослабление сигнала на 12 дБ. Введенное усиление или ослабление автоматически учитывается в результатах измерений. При установке «**0дБ**» пик-уровень входного сигнала не должен превышать **8 дБм**. Если уровень сигнала превышает измерительный диапазон, то формируется сообщение «**Перегрузка!**».

 $^{^{2}}$ БПФ – быстрое преобразование Фурье.

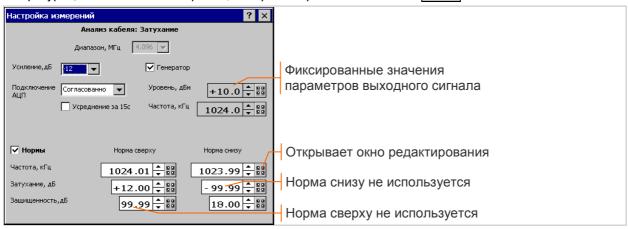
³ СКЗ – среднеквадратичное значение.

⁴ Скорость зависит от коэффициента укорочения: **V=150 / К**. Значение по умолчанию **V=100 м/мкс** соответствует кабелю, изоляция жил которого выполнена из невспененного полиэтилена.


⁵ Эффективная длительность импульса **Ти** определяет значение верхнего предела развертки рефлектограммы **Lmakc=500×Tu×V**. При **V=100м/мкс** для указанного ряда длительностей пределы развертки по длине составят **1200**, **2400**, **5000**, **10000** м при разрешении **1.2**, **2.4**, **5**, **10** м.

8.1 Измерение затухания

Режим "Анализ кабеля: Затухание" должен быть установлен в главном окне до включения измерительного модуля.


Измеряемая пара должна быть подключена к разъему E1-A Rx и разъему E1-A Tx удаленного анализатора, экран кабеля подключается к клемме \perp :

Анализатор формирует сигнал SIN 1024 кГц уровнем +10 дБм и измеряет затухание кабеля. Определяются следующие параметры:

- Частота, кГц частота входного сигнала;
- Затухание, дБ разность уровней формируемого сигнала и измеренного;
- Защищенность, дБ разность уровней сигнала и шума в полосе 10...4096 кГц;
- Спектр, дБм(кГц) распределение спектральной плотности мощности сигнала.

Настройка измерения затухания и задание норм выполняется загрузкой ранее созданной конфигурации или в окне настройки, которое открывается кнопкой Г/И главного окна:

Предусмотрены следующие параметры настройки:

- Генератор сброс флажка обеспечивает блокировку выходного сигнала SIN 1024 кГц;
- Усиление, дБ аппаратное усиление входного сигнала: -12, 0, 10, 20, 30, 40 дБ; рекомендуется установить максимальное значение усиления, не приводящее к появлению сообщения "Перегрузка!" при подключении измеряемой пары;
- Подключение АЦП согласованно или высокоомно;
- Усреднение за 15 c флажок разрешения усреднения¹;
- Нормы флажок разрешение нормирования измеряемых параметров:
 - Норма сверху максимально допустимые значения измеряемых параметров:
 - Норма снизу минимально допустимые значения измеряемых параметров.

Неиспользуемые нормы обозначаются максимальным отрицательным или положительным значением, которое задается кнопкой = 9 окна редактирования нормы.

Измерительный модуль включается с помощью кнопки 😃, после включения могут быть изменены любые параметры настройки анализатора, кроме режима измерений. Изменение норм возможно в любой момент времени, до и после завершения сеанса.

В главном окне отображаются значения измеряемых параметров, признаки выполнения норм за время измерений, запас и возможное сообщение о перегрузке:

¹ Оперативный сброс усреднения во всех режимах анализа кабеля осуществляется кнопкой 💹

После включения и настройки можно начать сеанс измерений с помощью кнопки **Сеанс**. Параметры настройки измерений до завершения сеанса изменить нельзя.

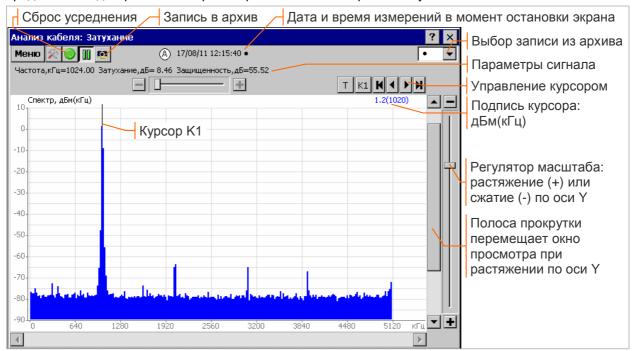

Дата и время начала записи выводится в главном окне, результаты сохраняются в архиве. Временные диаграммы измеряемых параметров и заданные нормы отображаются в окне, которое открывается кнопкой **Анализ** главного окна. Описание окна временных диаграмм содержится в разделе 8.3.1.

Диаграмма спектра отображается с помощью кнопки **Спектр** главного окна в соответствии с описанием в разделе 8.1.1. Запись диаграммы в архив выполняется во время сеанса измерений по команде оператора.

Сеанс прекращается нажатием кнопки Сеанс или по достижении заданного времени.

8.1.1 Отображение спектра

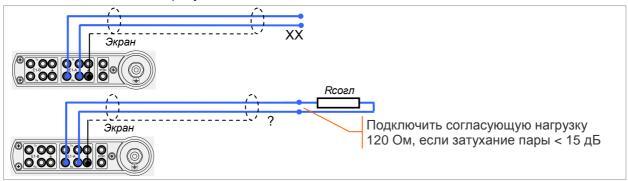
Окно отображения спектральной характеристики открывается с помощью кнопки **Спектр** главного окна во всех режимах измерения параметров кабеля, кроме рефлектометра. Ниже представлена диаграмма спектра во время сеанса измерения затухания:

Верхняя часть окна содержит дату/время измерения, значения параметров входного сигнала¹, а также возможное сообщение о перегрузке.

Диаграмма "Спектр, дБм(кГц)" отображает распределения уровня мощности принимаемого сигнала по частоте.

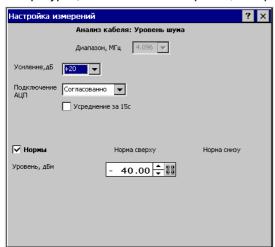
Управление курсорами и масштабирование спектрограммы осуществляется в соответствии с описанием в разделах 5.3.2, 5.3.4.

Запись в архив во время сеанса измерений выполняется из данного окна кнопкой №, как показано в разделе 5.3.7. В режиме измерения АЧХ одновременно записываются в архив две характеристики - спектр и АЧХ. Поле номера записи в верхней части окна используется для выбора записей на просмотр.


¹ Состав параметров изменяется в зависимости от режима измерений.

8.2 Измерение уровня шума

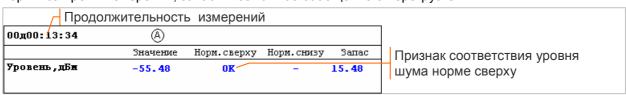
Режим "Анализ кабеля: Уровень шума" должен быть установлен в главном окне *до включения* измерительного модуля.


Измеряемая пара должна быть подключена к разъему **E1-A Rx**, экран кабеля подключается к клемме \perp , как показано на рисунке:

Анализатор измеряет уровень шума при заблокированном сигнале собственного передатчика. Определяются следующие параметры:

- Уровень, дБм среднеквадратичное значение уровня шума в полосе 10...4096 кГц;
- Спектр, дБм(кГц) распределение спектральной плотности мощности шума.

Настройка измерения уровня шума и задание норм выполняется загрузкой ранее созданной конфигурации или в окне настройки, которое открывается кнопкой **Г/И** главного окна.



Подлежат настройке следующие параметры:

- Усиление, дБ аппаратное усиление входного сигнала: -12, 0, 10, 20, 30, 40 дБ; рекомендуется установить максимальное значение усиления, не приводящее к появлению сообщения "Перегрузка!" при подключении измеряемой пары;
- Усреднение за 15 с флажок разрешения усреднения; рекомендуется разрешать усреднение для лучшего выявления характерных спектральных линий на фоне случайных шумов.
- Нормы флажок разрешения нормирования:
 - о **Норма сверху максимально** допустимое значение уровня шума.

Диаграмма спектра отображается с помощью кнопки **Спектр** главного окна в соответствии с описанием в разделе 8.1.1. Запись диаграммы в архив выполняется во время сеанса измерений по команде оператора.

В главном окне отображается измеренное значение уровня шума, признак выполнения нормы за время измерений, запас и возможное сообщение о перегрузке:

После включения и настройки можно начать сеанс измерений с помощью кнопки **Сеанс**. Параметры настройки измерений до завершения сеанса изменить нельзя.

Дата и время начала записи выводится в главном окне, результаты сохраняются в архиве. Временная диаграмма уровня шума и заданная норма отображаются в окне, которое открывается кнопкой **Анализ** главного окна. Описание окна временных диаграмм содержится в разделе 8.3.1.

Сеанс прекращается нажатием кнопки Сеанс или по достижении заданного времени.

8.3 Измерение уровня рабочего сигнала Е1

Режим "Анализ кабеля: Уровень Е1" должен быть установлен в главном окне **до включения** измерительного модуля.

Измеряемая пара должна быть подключена к разъему **E1-A Rx**, формирование сигнала E1 на дальней стороне обеспечивает аппаратура связи или анализатор AnCom E-9 (разъем **E1-A Tx**):

Анализатор измеряет уровень сигнала E1 с помощью высокоомно подключенного АЦП. Определяются следующие параметры сигнала:

- Уровень Е1, дБм среднеквадратичное значение уровня в полосе 10...4096 кГц;
- Спектр, дБм(кГц) распределение спектральной плотности мощности сигнала;

Формирование и прием потока Е1 обеспечивает приемопередатчик Е1-А, тип подключения анализатора соответствует типу подключения приемника Е1 канала А.

В целях установления взаимодействия с аппаратурой связи индицируются аварийные сигналы и основные параметры потока E1: Уровень, д ${\sf E}^1$, ОтклЧастоты, ${\sf \Gamma}$ ц, количество ошибок Битов, Кода, FAS, MFAS, CRC4, E-bit.

Настройка параметров режима измерений и задание норм выполняется загрузкой ранее созданной конфигурации или в окнах настройки, которые открываются кнопками главного окна:

- **Г/И** настройка измерителя уровня сигнала E1, задание норм;
- Стык настройка передатчика и приемника Е1 канала А, выбор типа подключения:
 - о Согласованно согласованное подключение 120 Ом (см. раздел 6.2);
 - Высокоомно высокоомное подключение;
- ПСП настройка передатчика и приемника испытательной последовательности (см. 6.3);
- ДефОш управление вводом дефектов и ошибок (см. раздел 6.4).

Окно настройки измерителя уровня сигнала Е1 представлено ниже на рисунке.

Подлежат настройке следующие параметры:

- Усиление, дБ аппаратное усиление входного сигнала: -12, 0, 10, 20, 30, 40 дБ; рекомендуется установить максимальное значение усиления, не приводящее к появлению сообщения "Перегрузка!" при подключении измеряемой пары;
- Усреднение за 15 с флажок разрешения усреднения на интервале 15 с;
- Нормы флажок разрешения нормирования параметра "Уровень Е1, дБм":
 - Норма сверху максимально допустимое значение;
 - Норма снизу минимально допустимое значение.

 $^{^{1}}$ Уровень определяется в децибелах относительно номинального с амплитудой импульсов U = 3 B.

Диаграмма спектра отображается с помощью кнопки **Спектр** главного окна в соответствии с описанием в разделе 8.1.1. Запись диаграммы в архив выполняется во время сеанса измерений по команде оператора.

В главном окне после включения отображаются значения измеряемых параметров, а также отметки выполнения норм за время измерений, запас и возможное сообщение о перегрузке:

	•	•				
<mark>/</mark> Продолжите	льность и	змерений				
00д00:01:25	A	Пик / Кош		Макс. по абсолютной величине		
Уровень, дБ -24 ОтклЧастоти, Гц		[-39.5]		значения за время измерений (Пик)		
Ошибки Битов Ошибки Кода	0			Коэффициенты ошибок		
Ошибки FAS Ошибки HFA S	0	0		(Кош)		
Ошибки CRC4 Ошибки E-bit	0	0				
ORNORN E-DIC	Значение	Норм.сверху Норм.снизу	Запас			
Уровень El,дБж	-8.46		_	Нормы не заданы		

Показатели ошибок отображаются на экране в соответствии с установкой флажков:

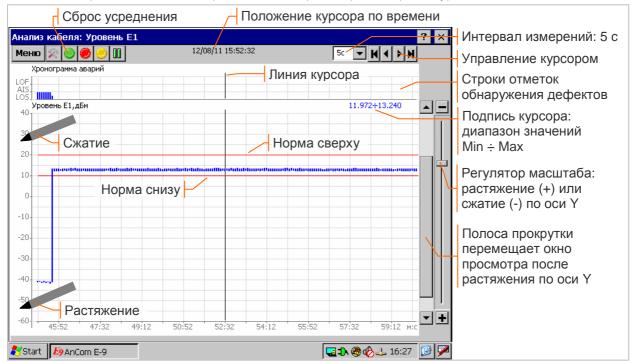
- За 10с за последние 10 с;
- ☐ 3a 10c за время после включения или команды сброса¹.

Сброс показателей ошибок, максимальных значений параметров, а также сброс усреднения и отметок выполнения норм выполняется общей кнопкой сброса .

После включения и настройки можно начать сеанс измерений с помощью кнопки Сеанс. Параметры настройки измерений до завершения сеанса изменить нельзя.

Дата и время начала записи выводится в главном окне, результаты сохраняются в архиве с интервалом 1 с. Временная диаграмма параметра "Уровень Е1, дБм", заданные нормы и хронограмма аварийных сигналов LOS, AIS, LOF отображаются в окне, которое открывается кнопкой Анализ главного окна. Описание окна временных диаграмм содержится в разделе 8.3.1.

Сеанс прекращается нажатием кнопки Сеанс или по достижении заданного времени.

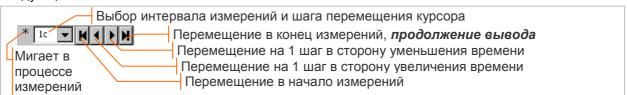

70 AnCom E-9

¹ После начала сеанса отображаются показатели ошибок за время сеанса измерений.

8.3.1 Отображение временных диаграмм

Временные диаграммы отображаются во время сеансов измерения затухания, уровня рабочего сигнала Е1, уровня шума. Окно временных диаграмм открывается кнопкой **Анализ** главного окна, если выполняется сеанс измерения или открыт для просмотра результатов сеанс из архива.

Ниже представлено окно временных диаграмм при измерении уровня сигнала Е1:



Все графики имеют общую горизонтальную ось - время измерений. Интервал измерений выбирается из ряда значений: 1 с, 5 с, 15 с, 1 мин, 5 мин, 15 мин, 1 час, 1 день. При первом открытии окна на экране отображается весь период измерений.

Хронограмма аварий показывает факт обнаружения дефектов LOS, AIS, LOF на интервале измерений. Обнаружение дефекта изображается столбиком в соответствующей строке. На секундной хронограмме высота всех столбиков постоянная. Для интервалов больше 1 с полная высота столбика соответствует обнаружению дефекта в каждую секунду интервала, половина высоты соответствует обнаружению дефекта не во всех секундах.

Временная диаграмма показывает значение параметра в каждую секунду измерений или диапазон значений для интервалов больше 1с. Масштаб вертикальной оси линейный.

Курсор перемещается касанием требуемой точки графика стилусом или с помощью следующих кнопок:

Перемещение курсора во время измерений прекращает обновление диаграммы, кнопка обеспечивает *продолжение вывода* измеренных значений.

Подпись курсора в заголовке временной диаграммы может иметь вид:

- Y точное значение параметра при заданном положении курсора;
- Ymax ÷ Ymin диапазон значений параметра на интервале, заданном положением курсора.

Масштабирование графиков по оси Y выполняется с помощью регуляторов масштаба или касанием нижней часть вертикальной оси (растяжение) или верхней части оси (сжатие).

¹ Перемещение курсора невозможно, если вывод на экран остановлен нажатием кнопки 🔟.

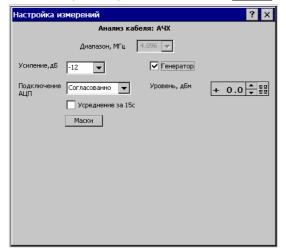
8.4 Измерение АЧХ рабочего затухания и NEXT

Режим "Анализ кабеля: АЧХ" должен быть установлен в главном окне *до включения* измерительного модуля.


Измерение рабочего затухания (Insertion Loss)

Измеряемая пара должна быть подключена к разъему **E1-A Rx** и разъему **E1-A Tx** удаленного анализатора, экран кабеля подключается к клемме \perp , как показано на рисунке :

Измерение переходного затухания на ближнем конце (NEXT)


Измеряемая пара должна быть подключена к разъему **E1-A Rx**, влияющая пара должна быть подключена к разъему **E1-A Tx**, экран кабеля подключается к клеммам \perp :

Анализатор формирует многочастотный сигнал (МЧС) и измеряет АЧХ. Определяются следующие параметры:

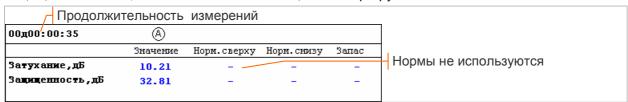
- Затухание, дБ разность уровней формируемого МЧС и измеренного;
- Защищенность, дБ разность уровней сигнала и шума в полосе 10...4096 кГц;
- АЧХ, дБ(кГц) разность формируемого и измеренного уровней на каждой частоте МЧС;
- Спектр, дБм(кГц) распределение спектральной плотности мощности сигнала.

Настройка измерения АЧХ производится загрузкой ранее созданной конфигурации или в окне, которое открывается кнопкой Г/И главного окна.

Подлежат настройке следующие параметры:

- Генератор сброс флажка обеспечивает блокировку выходного сигнала в режиме измерения АЧХ рабочего затухания;
- Усиление, дБ аппаратное усиление входного сигнала, выбирается из ряда значений: -12, 0, 10, 20, 30, 40 дБ; рекомендуется установить максимальное значение усиления, не приводящее к появлению сообщения "Перегрузка!" при подключении измеряемой пары;
- Подключение АЦП согласованно или высокоомно:
- Усреднение за 15 с флажок разрешения усреднения.

Решение о пригодности кабеля принимается по результатам измерения АЧХ с учетом маски:

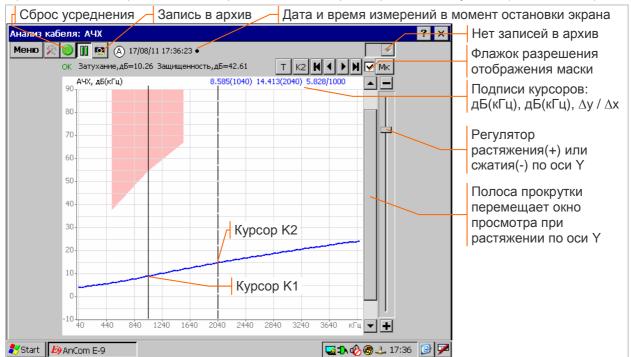

- АЧХ рабочего затухания должно быть ниже маски (устанавливается маска сверху);
- АЧХ переходного затухания должно быть выше маски (устанавливается маска снизу).

Редактор масок вызывается кнопкой Маски, работа с редактором описана в разделе 5.3.6. Признак соответствия измеренной характеристики АЧХ установленной маске «ОК» или «ERR» выводится в окне отображения АЧХ.

Измерительный модуль включается с помощью кнопки , после включения можно изменить любые параметры настройки анализатора, кроме режима измерений. Изменение маски возможно в любой момент времени, до и после завершения сеанса.

Диаграммы спектра и АЧХ отображаются с помощью кнопок **Спектр**, **АЧХ** главного окна в соответствии с описанием в разделах 8.1.1, 8.4.1.

В главном окне после включения отображаются измеренные значения затухания и защищенности МЧС, а также возможное сообщение о перегрузке:


После включения и настройки можно начать сеанс измерений с помощью кнопки **Сеанс**. Параметры настройки до завершения сеанса изменить нельзя.

Диаграммы спектра и АЧХ могут быть одновременно записаны в архив **во время сеанса** измерений по команде оператора. Сохранение временных зависимостей в данном режиме не предусмотрено.

Сеанс прекращается нажатием кнопки Сеанс, продолжительность сеанса в данном режиме не может быть установлена заранее.

8.4.1 Отображение АЧХ

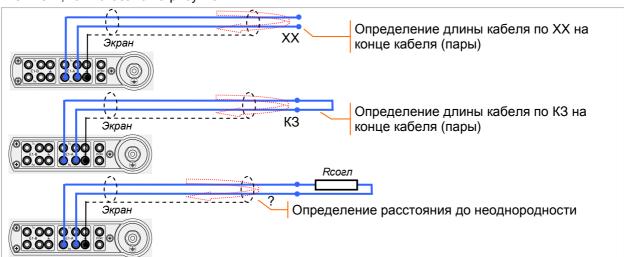
Окно отображения АЧХ открывается с помощью кнопки **АЧХ** главного окна. Ниже представлена диаграмма АЧХ во время сеанса измерения рабочего затухания (Insertion Loss):

Верхняя часть окна содержит дату/время измерения, значения затухания и защищенности МЧС или возможное сообщение о перегрузке.

Диаграмма "АЧХ, дБ(кГц)" отображает разность формируемого и измеренного уровней на каждой частоте МЧС.

Маски АЧХ создаются и редактируются в соответствии с описанием в разделе 5.3.6. Кнопка Мк открывает окно редактора, флажок рядом с кнопкой разрешает или запрещает отображение маски, установленной с помощью редактора. Результат проверки соответствия измеренной характеристики установленной маске обозначается «ОК» или «ERR».

Управление курсорами и масштабирование АЧХ осуществляется в соответствии с описанием в разделах 5.3.2, 5.3.4.


Запись в архив во время сеанса измерения АЧХ выполняется кнопкой из данного окна или из окна отображения спектра, как показано в разделе 5.3.7. Одновременно записываются в архив две характеристики - АЧХ и спектр. Поле номера записи в верхней части окна используется для выбора записей на просмотр.

8.5 Рефлектометр

Режим "Анализ кабеля: Рефлектометр" должен быть установлен в главном окне до включения измерительного модуля.

Измеряемая пара должна быть подключена к разъему E1-A Rx, экран кабеля подключается к клемме \perp , как показано на рисунке:

Анализатор формирует псевдо-случайный сигнал (ПСС) и измеряет следующие параметры отраженного сигнала:

- Защищенность, дБ защищенность ПСС от суммарного уровня отраженных сигналов;
- Рефлектометр, %(м) развертка относительного уровня отраженного сигнала по длине линии.

Назначением рефлектометра является определение характера дефектов (неоднородностей) кабеля и расстояния до дефектов. Расстояние до дефекта определяется временем задержки отраженного сигнала и скоростью распространения, задаваемой как параметр настройки.

Настройка рефлектометра производится загрузкой ранее созданной конфигурации или в окне, которое открывается кнопкой Г/И главного окна.

Настройка измерений Анализ кабеля: Рефлектометр Импульс, нс 12 ▼ Усиление,дБ +6 ▼ Усреднение за 15с Шаблон Скорость распространения сигнала, м/мкс 100 💠 闘 Подлежат настройке следующие параметры:

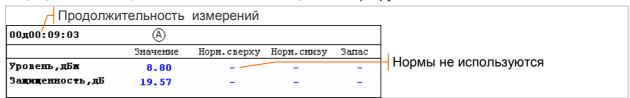
- Импульс, нс длительность импульсов ПСС: 12, 50, 100 нс; увеличение длительности импульсов приводит к увеличению максимальной измеряемой длины кабеля, но огрубляет разрешение по длине;
- Усиление, дБ аппаратное усиление входного сигнала от +6 до +12 дБ; рекомендуется установить максимальное значение, приводящее к появлению сообщения "Перегрузка!" при подключении измеряемой пары;
- Усреднение флажок разрешения усреднения¹; рекомендуется разрешить усреднение для лучшего распознавания отраженных сигналов на фоне шумов;
- Скорость распространения, м/мкс половина

справочного значения скорости сигнала в измеряемом кабеле, от 50 до 150 м/мкс.

Сигнал с выхода анализатора проходит путь до дефекта (или конца кабеля) и обратно на вход анализатора, поэтому "Скорость распространения, м/мкс" задается равной половине справочного значения скорости сигнала в данном типе кабеля.

Другие способы определения скорости распространения:

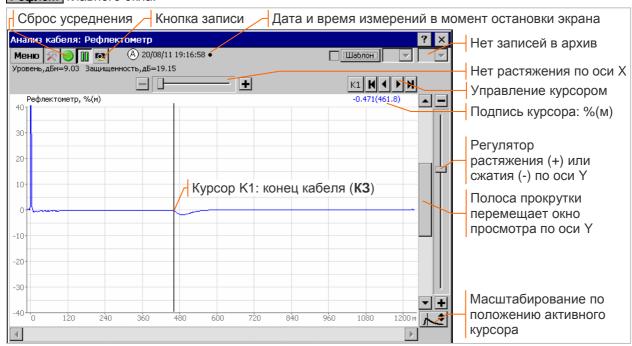
- Скорость распространения, м/мкс = 150/К, где К коэффициент укорочения длины волны;
- Скорость распространения, м/мкс = Скорость заданная,м/мкс х L,м / L измеренная,м , где L,м – известная длина кабеля, используемая для вычисления скорости по измеренной длине.


Измерительный модуль включается с помощью кнопки 😃, после включения могут быть изменены любые параметры настройки анализатора, кроме режима измерений.

¹ Оперативный сброс усреднения во всех режимах анализа кабеля осуществляется кнопкой 🔲.

74

В главном окне после включения отображаются измеренные значения уровня и защищенности ПСС, а также возможное сообщение о перегрузке:


После включения и настройки можно начать сеанс измерений с помощью кнопки **Сеанс**. Диаграммы временных зависимостей в данном режиме отсутствуют. Параметры настройки до завершения сеанса изменить нельзя, за исключением шаблона и скорости распространения.

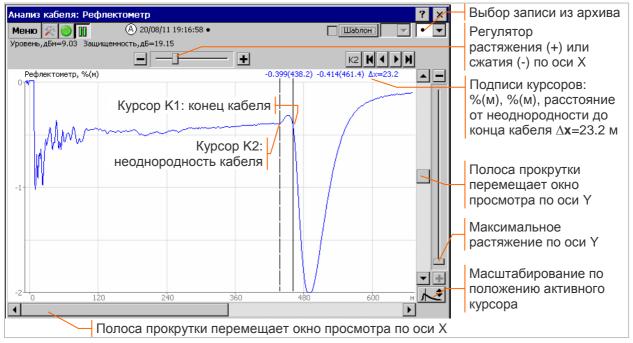
Рефлектограмма отображается кнопкой **Рефлект** главного окна, запись рефлектограмм в архив выполняется **во время сеанса** измерений по команде оператора.

Сеанс прекращается нажатием кнопки Сеанс, продолжительность сеанса в данном режиме не может быть установлена заранее.

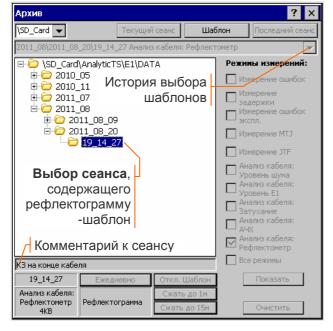
8.5.1 Отображение рефлектограмм

Окно отображения рефлектограмм, представленное ниже на рисунке, открывается кнопкой Рефлект главного окна:

Верхняя часть окна содержит дату/время измерения, значения уровня и защищенности ПСС, а также возможное сообщение о перегрузке.


Диаграмма "Рефлектометр, %(м)" отображает развертку относительного уровня напряжения отраженного сигнала по длине линии с учетом знака отраженного сигнала. По вертикальной оси отображается амплитуда отраженных сигналов в процентах относительно амплитуды основного сигнала, по горизонтальной оси - расстояние от входа E1-A Rx.

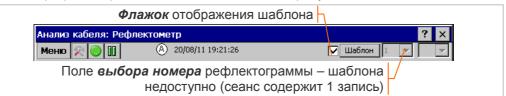
Визуальный анализ рефлектограмм требует масштабирования для выявления слабых сигналов, описание инструментов масштабирования представлено в разделе 5.3.4.


Дополнительным инструментом масштабирования является кнопка обеспечивает максимальное растяжение рефлектограммы по оси Y таким образом, чтобы на экране была видна заданная активным курсором точка Y(X) и симметричная ей (X,-Y).

Управление курсорами для измерения расстояния до неоднородности выполняется в соответствии с описанием в разделе 5.3.2.

Выявление масштабированием неоднородности кабеля, а также измерение расстояния Δx от неоднородности до конца кабеля с помощью курсоров K1, K2 представлено на рисунке:

На диаграмму можно вывести в качестве *шаблона* сохраненную рефлектограмму из архива измерений. Поиск содержащего шаблон сеанса начинается нажатием кнопки <u>шаблон</u> в окне настройки или окне рефлектограмм. Кнопка открывает окно управления архивом, представленное на рисунке:

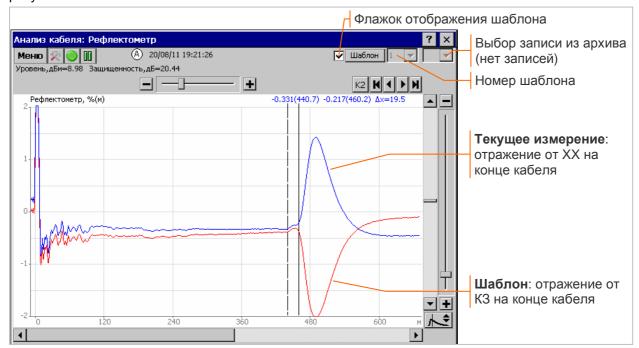

Необходимо выбрать в списке сеансов или в истории выбора шаблонов требуемый сеанс, содержащий рефлектограмму - шаблон. Выбор сеанса из списка запрещает доступ к истории выбора шаблонов, как показано на рисунке слева.

Установку шаблона и отмену установки обеспечивают следующие кнопки:

- **Шаблон** установить шаблон из сеанса, выбранного в списке;
- **Текущий сеанс** установить шаблон из текущего сеанса¹;
- Последний сеанс установить шаблон из последнего завершенного сеанса;
- Откл.Шаблон отмена установки шаблона.

Выбранный для установки шаблона сеанс может содержать несколько записей рефлектограмм.

Отображение шаблона производится после установки *флажка* в верхней строке окна отображения рефлектограммы, как показано ниже на рисунке:


Поле *выбора номера* рефлектограммы - шаблона доступно только в том случае, если сеанс содержит несколько записей.

76 AnCom E-9

-

¹ Кнопка доступна, если сеанс уже содержит записи рефлектограмм.

Совместное отображение измеряемой рефлектограммы и шаблона представлено ниже на рисунке:

Запись в архив во время сеанса измерений выполняется из данного окна кнопкой оказано в разделе 5.3.7. Поле выбора записи в верхней части окна используется для выбора из архива на просмотр записей рефлектограмм, выполненных во время сеанса.

9. Сервисные функции

9.1 Сведения об анализаторе

Окно сведений об анализаторе открывается из главного окна командой меню "О приборе", как показано на рисунке:

Окно содержит: номера версий СПО, серийный номер анализатора, поставочный вариант исполнения, номера аппаратных модулей.

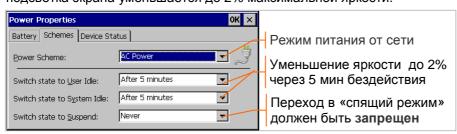
До первого включения измерительного модуля в окне сведений отображается ОКНО информация об приборе.

9.2 Системный сервис

использует операционную Анализатор Windows CE. Доступ к панели управления обеспечивается выдачей из меню "Start" команд "Settings", "Control Panel", как показано на рисунке справа. Могут быть полезны следующие команды панели управления:

- "Date/Time" установка текущей даты и времени;
- "Stylus" настройка реакции сенсорного экрана на двойное нажатие стилусом;
- "Volume & Sounds" устанавливает режим звукового сопровождения действий оператора; сопровождающие звуки выключает установка на вкладке "Sounds" параметра Scheme: No Sounds;
- "Power", "Display" устанавливают режим выключения подсветки экрана;
- "System" позволяет получать информацию о системе и управлять распределением памяти.

Внимание! Ошибочные действия оператора при выполнении команды "Storage Manager" могут привести анализатор в полностью неработоспособное состояние.


Меню 🏸 *а*налитик<mark>7</mark>((Ввод Деф,Оц ПО AnCom E-9 V 04.08 Ввод искажений № 015.0019 H4.01 Анализатор Вариант исполнения 100/0100 Повернуть экран Модуль базовый № 015.010.0019 н4.01 Модуль защиты № 015.020.0019 Н2.00 по DSP V2.06 13/10/2009 FPGA DSP V4.03 по мси v3.04 Платформа С9 № 019.0008 Н2.00 Модуль сопряж. № 019.010.0008 НЗ.12 Ватарея акк. № 019.070.0008 H2.00 Модуль соед. № 019.030.0008 H2.00 Модуль питания № 019.090.0008 Н2.01 Калибровка 08/05/2009 Copyright © 2011 Аналитик ТС

9.2.1 Выключение подсветки экрана

Подсветка экрана может быть выключена через заданное время бездействия оператора или уменьшена до 2% максимальной яркости. Выключение подсветки не оказывает влияния на выполнение измерений, яркость экрана восстанавливается при касании его стилусом.

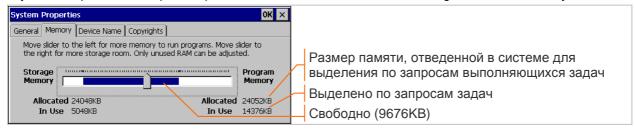
Команда меню "Start/ Settings/ Control Panel/ Power" открывает окно панели управления "Power Properties". На вкладке "Schemes" задается время бездействия оператора¹, при котором подсветка экрана уменьшается до 2% максимальной яркости:

Рекомендуется разрешить уменьшение яркости при бездействии.

«Спящий режим» вызывает аварийное текущих прекращение измерений и должен быть запрещен.

Запрет уменьшения яркости обеспечивается установкой на вкладке "Schemes" следующих значений параметров настройки: AC Power, Never, Never, Never.

¹ Время бездействия задается в используемой сборке Windows CE всегда для режима питания от сети. Режим питания от сети обозначается в окнах настройки «AC Power» или «external power».


Команда меню "Start/ Settings/ Control Panel/ Display" открывает окно панели управления "Display Properties". На вкладке "Backlight" задается время бездействия оператора, при котором подсветка экрана выключается полностью:

Запрет выключения подсветки обеспечивается сбросом на вкладке "Backlight" флажка "Automatically turn off backlight while on external power".

9.2.2 Контроль наличия свободной памяти

Работоспособность анализатора в режиме длительных измерений зависит от наличия свободной памяти. Распределение памяти отображается в окне панели управления "System Properties", которое открывается командой меню "Start/ Settings/ Control Panel/ System":

Storage Memory содержит все задачи, загруженные в память системы. Прекращение выполнения задачи не освобождает память данного типа.

Program Memory выделяется по запросам выполняющихся задач. Прекращение выполнения задачи освобождает выделенную ей память данного типа.

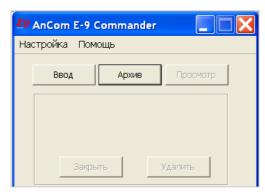
Если размер свободной памяти в процессе измерений становится меньше 1 MB, формируется предупреждающее сообщение:

В подобном случае необходимо увеличить на 3 - 5 МВ размер Program Memory перемещением влево ползункового регулятора на вкладке "Memory" в окне "System Properties", после перемещения регулятора необходимо нажать **ОК**.

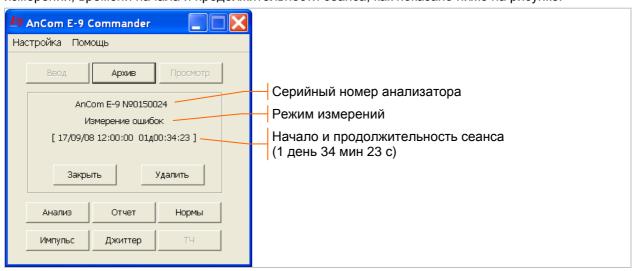
Внимание! Уменьшение свободной памяти до 0.5 МВ приводит к выключению анализатора, необходимо избегать выполнения посторонних задач в процессе измерений.

¹ Размер Program Memory контролируется при измерениях и увеличивается автоматически начиная с версии СПО V4.02.

10. E-9 Commander


Программа AnCom E-9 Commander предназначена для сохранения на персональном компьютере результатов измерений, полученных с помощью анализаторов AnCom E-9, а также для визуализации и печати сохраненных результатов.

10.1 Главное окно


Главное окно открывается в результате вызова программы AnCom E-9 Commander. После вызова в окне доступны следующие кнопки управления:

- **Ввод** обеспечивает считывания результатов измерений анализатора в архив ПК;
- **Архив** открывает окно управления архивом для выбора сеанса измерений.

Сеанс, выбранный в окне управления архивом, можно открыть для анализа результатов измерений и печати, а также удалить из архива или сжать.

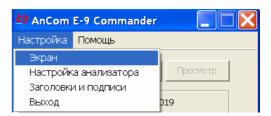
Открытие сеанса сопровождается выводом в главном окне информации о режиме измерений, времени начала и продолжительности сеанса, как показано ниже на рисунке:

После открытия сеанса становятся доступны кнопки перехода в окна визуализации и печати результатов измерений:

- Анализ анализ временных зависимостей;
- Отчет формирование отчетов по результатам сеанса измерения показателей ошибок;
- Нормы нормирование показателей ошибок и измеряемых параметров потока E1;
- **ТЧ** анализ каналов ТЧ, оценка качества передачи речи;
- Импульс анализ формы импульса входного сигнала;
- Джиттер анализ параметров джиттера;
- MTJ характеристика максимально допустимого входного джиттера (МТЈ);
- JTF передаточная характеристика джиттера (JTF);
- Закрыть / Удалить завершает просмотр результатов или удаляет сеанс из архива.

Дополнительные кнопки визуализации и печати результатов анализа кабеля:

- AЧХ АЧХ кабеля;
- Спектр спектрограмма;
- Рефлект. рефлектограмма кабеля;
- Г/И сведения о настройке генератора и измерителя; установка и изменение норм.


Кнопки перехода в окна визуализации недоступны, если соответствующие результаты во время сеанса измерений не записывались.

Окна визуализации отображают результаты измерений аналогично окнам анализатора AnCom E-9. Результаты можно вывести на печать или сохранить в виде отчетных файлов. Кнопка **Просмотр** позволяет открывать созданные отчетные файлы для редактирования и печати с помощью Microsoft Word, как показано в разделе •о.

10.1.1 Настройка параметров экрана

Окно настройки параметров экрана открывается командой меню "Настройка/ Экран" из главного окна:

Параметры экрана для отображения таблиц и графиков устанавливаются в соответствии с описанием в разделе 0.

10.1.2 Контекстный НеІр

Контекстный справочник открывается клавишей «F1». Если в рабочей директории файл E9CmdHelp1.html переименовать в E9CmdHelp.html, справочник будет открываться с помощью Internet Explorer.

10.2 Ввод измерений в архив ПК

10.2.1 Соединение по USB

Соединение требуется для считывания результатов измерений в архив ПК, а также для модернизации встроенного программного обеспечения анализатора.

Включите анализатор. До подключения кабеля USB нужно выйти из программы AnCom E-9 (экран должен реагировать на касание стилусом, индикатор READY должен быть выключен).

Соедините кабелем разъем USB Client на нижней панели анализатора и разъем USB Host компьютера. Установление связи осуществляется автоматически и сопровождается появлением в нижней строке экрана анализатора кнопки.

Соединение кабелем USB до выключения измерительного модуля вызывает прекращение измерений и появление аварийных сообщений на экране анализатора, как показано на рисунке справа:

В подобном случае необходимо отсоединить кабель, закрыть аварийные сообщения и повторно подключить USB.

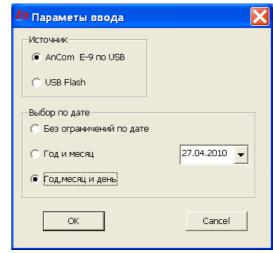
 AnCom E-9
 OK
 X

 Ошибка
 OK
 X

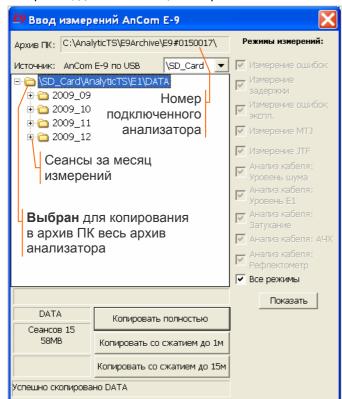
 Обмен по интерфейсу I2C с модулем AtMega нарушен!
 С

На экране ПК с Windows XP после соединения нужно закрыть окно настройки связи:

Индикатор 🕯 означает, что связь установлена и можно считывать результаты измерений.


Ввод измерений в архив ПК начинается нажатием кнопки **Ввод** главного окна. В открывшемся диалоговом окне необходимо указать источник результатов измерений и ограничение по дате, как показано на рисунке.

Источником результатов измерений может быть:


- "AnCom E-9 по USB" анализатор, подключенный по USB согласно описанию в разделе 10.2.1;
- "USB Flash" USB flash с результатами измерений, сохраненными согласно описанию в разделе 7.4.2.

Ограничение по дате позволяет уменьшить время получения списка сеансов, если архив подключенного анализатора содержит большое количество измерений.

После нажатия кнопки **ОК** в окне отображается список сеансов, содержащихся в архиве подключенного анализатора или записанных ранее на USB flash.

Копирование результатов выполняется после выделения в списке¹ требуемого сеанса измерений, дня или месяца измерений или полностью всего архива, как показано на рисунке:

В нижней части окна для выбранного месяца или дня измерений отображается количество сеансов и общий объем данных.

Для выделенного *сеанса* выводится идентификационная информация: режим измерений, использование каналов A и B, продолжительность измерений, интервал сохранения результатов и комментарий. Выводятся также признаки наличия результатов анализа формы импульса (Им), джиттера (Дж), каналов TЧ (ТЧ) или характеристик кабеля (Спектр, АЧХ, Рефлектограмма).

Копирование результатов в архив ПК осуществляется кнопками в нижней части окна. В архиве создается директория, соответствующая номеру анализатора.

Копирование **со сжатием** уменьшает размер сохраняемых данных за счет увеличения интервала сохранения результатов до 1 мин или до 15 мин.

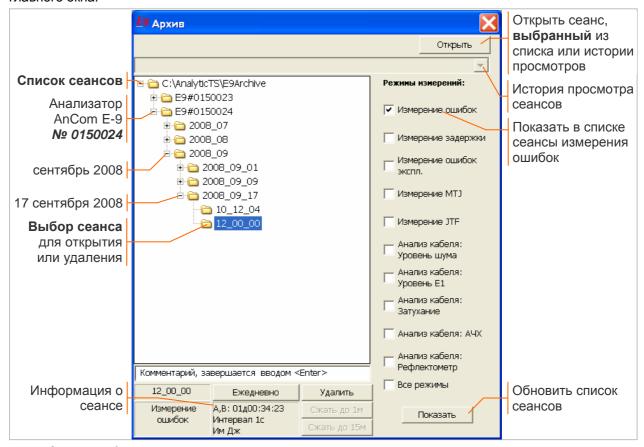
Скорость копирования ограничена производительностью интерфейса USB, при большом объеме данных копирование может занять несколько минут 2 .

Архив ПК создается в директории C:\AnalyticTS\E9Archive при первом вводе результатов измерений. Повторный ввод результатов в архив ПК замещает результаты, введенные ранее.

10.2.2 Соединение по локальной сети или через Internet

Ввод измерений **от удаленных анализаторов** по локальной сети или через Internet выполняет система дистанционного управления AnCom RC-9 в соответствии руководством по эксплуатации на систему.

82 AnCom E-9


_

¹ Список содержит информацию только о тех сеансах, которые соответствуют флажкам режимов измерений, при переустановке флажков необходимо обновить список нажатием кнопки **Показать**.

² Результаты за 7 суток измерений по двум каналам с интервалом 1 с (40МБ) копируются ~1 мин.

10.3 Управление архивом ПК

Окно управления архивом ПК, представленное ниже на рисунке, открывается кнопкой **Архив** главного окна:

Сеанс, выбранный из списка сеансов или из истории просмотра сеансов, можно открыть для анализа и печати результатов измерений (выбор сеанса в списке, как показано выше на рисунке, запрещает доступ к истории просмотра сеансов).

Список сеансов содержит информацию только о тех сеансах, которые соответствуют установленным флажкам режимов измерений, в случае переустановки флажков необходимо обновить список нажатием кнопки Показать.

В нижней части окна выводится комментарий и идентификационная информация для выделенного в списке сеанса: время начала, режим измерений, использование каналов А и В, продолжительность измерений, интервал сохранения результатов. Выводятся также признаки наличия результатов анализа формы импульса (Им), джиттера (Дж), параметров канала ТЧ (ТЧ) или характеристик кабеля (Спектр, АЧХ, Рефлектограмма).

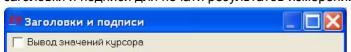
Комментарий к сеансу редактируется, как текстовая строка. Комментарий сохраняется в архиве после ввода завершающего <Enter>.

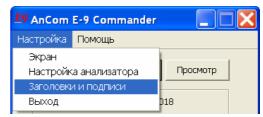
Открытие, удаление и сжатие результатов сеанса обеспечивается кнопками:

- Открыть открывает выбранный сеанс для анализа и печати результатов измерений.
- **Ежедневно** открывает несколько сеансов измерений, ежедневно выполнявшихся в одно и то же время для выявления долгосрочной статистической зависимости; шаг по времени при анализе временных диаграмм 1 сеанс.
- **Удалить** удаляет результаты сеанса измерений, одного дня или месяца измерений, все результаты одного анализатора или полностью весь архив.
- **Сжать до 1м** уменьшает размер хранящихся в архиве результатов сеанса за счет увеличения интервала сохранения до 1 мин. После сжатия временные диаграммы можно просматривать с шагом по времени от 1 мин до 1 суток. Результаты за 7 суток измерений уменьшается с 40МБ до 2.5МБ.
- Сжать до 15м уменьшает размер хранящихся в архиве результатов сеанса за счет увеличения интервала сохранения до 15 мин. После сжатия временные диаграммы можно просматривать с шагом по времени от 15 мин до 1 суток. Результаты за 7 суток измерений уменьшается с 40МБ до 0.3МБ.

Открытие сеанса сопровождается выводом информации о сеансе измерений в главном окне, как показано в разделе 10.1. Данные из архива отображаются в окнах визуализации результатов измерений.

10.4 Печать и вывод в файл результатов измерений


Окна визуализации результатов измерений отображают данные из архива аналогично окнам анализатора AnCom E-9. Результат из окна визуализации можно вывести на печать с помощью команд меню "Печать" или сохранить в отчетном файле с помощью команд меню "В файл".


Отчетные файлы записываются в директорию "E9Archive\Reports\E9#SerNum\20YY_mm\20YY_mm_dd\hh_mm_ss\", которая соответствует номеру анализатора, году, месяцу, дню и сеансу измерений. Диаграммы записываются в графические файлы, идентификационная информация сеанса, значения измеряемых параметров, таблицы данных диаграмм, параметры настройки анализатора записываются в html-файлы.

Отчетные файлы (html-текст) можно редактировать с помощью программы Microsoft Word.

10.4.1 Заголовки и подписи для печати

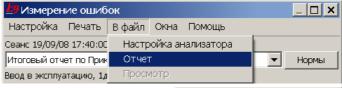
Команда меню "Настройка/ Заголовки и подписи" открывает окно, в котором задаются дополнительные заголовки и подписи для печати результатов измерений:

Текст заголовков печатается в верхней части страницы, текст подписей - в нижней части, после результатов измерений. Заголовки и подписи не используются при сохранении отчетных файлов, необходимое редактирование обеспечивается с помощью Microsoft Word.

Флажок "Вывод значений курсора" разрешает выводить на печать и в отчетные файлы линию курсора и подпись курсора, которые видны при отображении диаграмм на экране ПК.

10.4.2 Комплексный отчет

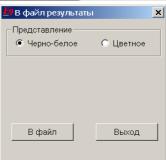
Комплексный отчет _summary.html создается при анализе сеанса измерений в момент записи первого отчетного файла командой "В файл". Комплексный отчет содержит все результаты измерений и параметры настройки анализатора в порядке их сохранения оператором, например:


- Итоговый отчет по Приказу №92;
- Временные диаграммы;
- Таблицы измерений параметров;
- Результаты анализа формы импульса;
- Параметры настройки анализатора и т.п.

Просмотр, удаление и печать отчетных файлов выполняется с помощью кнопки **Просмотр** главного окна или командой меню "В файл/ Просмотр" из окон визуализации результатов измерений.

10.4.3 Отчет о измерении показателей ошибок

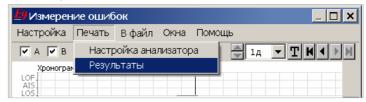
Окно отчетов открывается кнопкой **Отчет** главного окна, если был открыт сеанс измерения ошибок. Формирование отчетов и нормирование выполняется согласно описанию в разделе 7.2.


Сформированный в окне отчет можно вывести на печать командой меню "Печать/ Отчет" или сохранить в отчетном файле командой меню "В файл/ Отчет", как показано на рисунке:

В открывшемся диалоговом окне нужно выбрать цветное¹ или черно-белое представление отчета.

Первая команда "В файл/ Отчет" создает файл Report000.html, последующие команды сохраняют отчеты в файлах Report001.html, Report002.html и т.д. Имена сохраненных файлов отображаются в информационном окне.

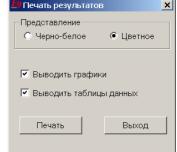
Команда меню "В файл/ Просмотр" открывает отчетные файлы для редактирования и печати с помощью Microsoft Word.


Пример отчета о измерении показателей ошибок представлен в Приложении 14.

¹ Критические параметры выделяются красным цветом или символом «!» в черно-белом варианте.

10.4.4 Временные диаграммы, таблица измерений

Окно анализа временных диаграмм открывается кнопкой **Анализ** главного окна. Диаграммы отображаются согласно описанию в разделах 7.3.1, 8.3.1.


Диаграммы, отображаемые в окне анализа, можно сохранить в отчетном файле командой "В файл/ Результаты" или вывести на печать командой меню "Печать/ Результаты", как показано на рисунке:

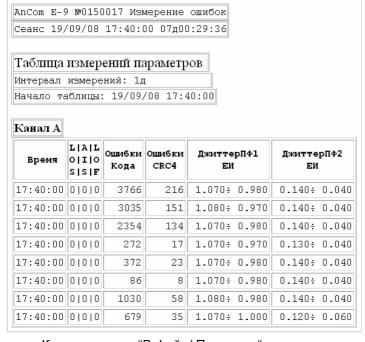
В открывшемся диалоговом окне нужно выбрать цветное или черно-белое представление диаграмм и состав выводимой информации:

Цветное представление обеспечивает вывод на одну страницу всех диаграмм, видимых в окне анализа. Результаты каналов A и B отличаются цветом.

Черно-белое представление обеспечивает вывод на одну страницу диаграмм одного измерительного канала (необходимо выбрать канал А или В на вкладке "Диаграммы" окна настройки). Количество точек по оси времени слева и справа от линии курсора определяется возможностями принтера и может быть меньше отрезка времени измерений, видимого на диаграмме.

Флажок "Выводить таблицы данных" обеспечивает вывод таблицы измерений параметров, отображаемых на временных диаграммах.

Первая команда записи "В файл/ Результаты" создает следующие отчетные файлы:


- Diagr000.html текстовый файл, содержит идентификационную информацию сеанса и таблицу измерений параметров;
- Diagr000.bmp графический файл, содержит отображаемые в окне диаграммы.

Последующие команды сохраняют диаграммы в отчетных файлах Diagr001, Diagr002 и т.д.

Имена сохраненных файлов отображаются в информационном окне.

Таблица измерений содержит значения параметров, отображаемых на диаграммах.

Столбцы таблицы соответствуют именам отображаемых параметров. Выбор параметров производится на вкладке "Диаграммы" окна настройки согласно описанию в разделе 7.3.4.

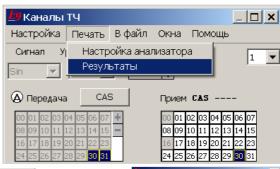
Количество строк таблицы соответствует видимому на диаграмме отрезку времени измерений.

Интервал измерений выбирается в окне временных диаграмм из ряда значений: 1 с, 1 мин, 15 мин, 1 ч, 1 день.

Для интервала измерений больше 1 с величины MAX ÷ MIN соответствуют максимальному и минимальному значениям измеряемого параметра.

Команда меню "В файл/ Просмотр" открывает отчетные файлы для редактирования и печати с помощью Microsoft Word.

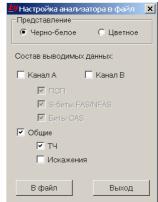
Открывается командой меню "Настройка/ Настройка анализатора".

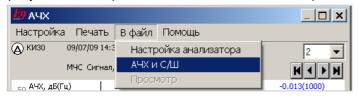

10.4.5 Анализ каналов ТЧ, оценки качества передачи речи

Окно анализа каналов ТЧ и оценок качества передачи речи открывается кнопкой **ТЧ** главного окна, отображение результатов соответствует описанию в разделах 6.7, 6.8.

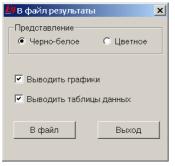
Измеренные значения параметров сигнала ТЧ или оценку качества речи можно сохранить в отчетном файле командой "В файл/ Результаты" или вывести на печать командой меню "Печать/ Результаты", как показано на рисунке.

Первая команда "В файл / Результаты" создает файл VF000.html, последующие команды сохраняют результаты в файлах VF001.html, VF002.html и т.д.


Имена сохраненных файлов отображаются в информационном окне.



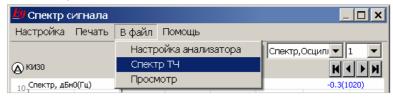
Параметры формируемого сигнала ТЧ, номера КИ передачи и приема можно вывести на печать командой меню "Печать/ Настройка анализатора" или сохранить в отчетном файле командой "В файл/ Настройка анализатора". В открывшемся диалоговом окне нужно выбрать цветное или черно-белое представление и состав сохраняемой информации (установить флажок "ТЧ"), как показано на рисунке справа.


Первая команда записи "В файл/ Настройка анализатора" создает файл Setup000.html, последующие команды сохраняют параметры настройки в отчетных файлах Setup001.html, Setup002.html и т.д.

Окно **частотных характеристик** открывается кнопкой **АЧХ** из окна анализа каналов ТЧ, результаты отображаются согласно описанию в разделе 6.7.2.

Отображаемые в окне диаграммы можно вывести на печать командой меню "Печать / АЧХ и С/Ш" или сохранить в отчетном файле командой "В файл / АЧХ и С/Ш", как показано на рисунке.

В открывшемся диалоговом окне нужно выбрать цветное или черно-белое представление диаграмм и состав сохраняемой информации. Флажок "Выводить таблицы данных" разрешает вывод табличного представления диаграмм.

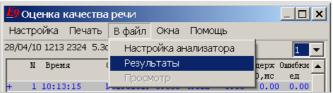

Первая команда записи "В файл / АЧХ и С/Ш" создает файлы:

- VF_AFC000.html текстовый файл, содержит идентификационную информацию сеанса и табличное представление диаграмм;
- VF_ AFC000.bmp графический, содержит диаграммы АЧХ и С/Ш.

Последующие команды записи сохраняют диаграммы в отчетных файлах VF_AFC001, VF_AFC002 и т.д.

Окно **спектра и осциллограммы** открывается кнопкой **Спектр** из окна анализа каналов ТЧ, результаты отображаются согласно описанию в разделе 6.7.1.

Диаграмму спектра можно вывести на печать командой меню "Печать/ Спектр ТЧ" или сохранить в отчетном файле командой "В файл/ Спектр ТЧ", как показано на рисунке.

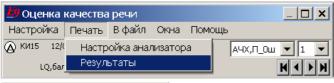

В открывшемся диалоговом окне нужно выбрать цветное или черно-белое представление диаграммы и состав сохраняемой информации. Флажок "Выводить таблицы данных" разрешает вывод табличного представления диаграммы.

Первая команда записи "В файл/ Спектр ТЧ" создает следующие отчетные файлы:

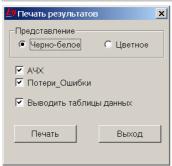
- VF_Spectr000.html текстовый файл, содержит идентификационную информацию сеанса и табличное представление спектра;
- VF_Spectr000.bmp графический файл, содержит диаграмму спектра.
 Последующие команды сохраняют результаты в файлах VF Spectr001, VF Spectr002 и т.д.

Окно оценок качества передачи речи открывается кнопкой Оценки из окна анализа каналов ТЧ, отображение результатов соответствует описанию в разделе 6.8.1.

Таблицу оценок качества передачи речи можно вывести на печать командой меню "Печать/ Результаты" или сохранить в отчетном файле командой меню "В файл/ Результаты", как показано на рисунке.



Обеспечивается печать и сохранение


в файле видимой на экране части таблицы оценок в случае, если размер таблицы превышает размер окна.

Первая команда "В файл/ Результаты" сохраняет идентификационную информацию сеанса и таблицу оценок в файле VF P862T000.html, последующие команды создают отчетные файлы VF_P862T001, VF_ P862T002 и т.д.

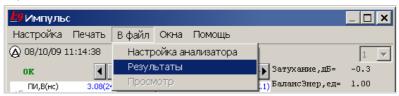
Окно характеристик качества передачи речи открывается кнопкой Диагр из окна анализа каналов ТЧ, отображение результатов соответствует описанию в разделе 6.8.2.

Отображаемые в окне диаграммы можно сохранить в отчетном файле командой меню "В файл/ Результаты " или вывести на печать командой "Печать/ Результаты", как показано на рисунке.

В открывшемся диалоговом окне нужно выбрать цветное или черно-белое представление диаграмм и состав сохраняемой информации:

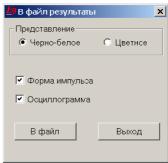
- флажки с обозначением диаграмм обеспечивают их сохранение или вывод на печать;
- флажок "Выводить таблицы данных" разрешает сохранение или вывод на печать табличного представления диаграмм.

Первая команда записи "В файл / Результаты" создает следующие отчетные файлы:


- VF P862D000.html текстовый файл, содержит идентификационную информацию сеанса и табличное представление диаграмм;
- VF P862D000H.bmp графический файл, содержит первую (верхнюю) диаграмму;
- VF_P862D000L.bmp графический файл, содержит вторую (нижнюю) диаграмму. Последующие команды записи создают файлы VF P862D001x, VF P862D002x и т.д.

Команда меню "В файл/ Просмотр" открывает сохраненные отчетные файлы для редактирования и печати с помощью Microsoft Word.

Анализ формы импульса

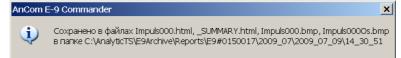

Окно анализа формы импульса открывается кнопкой **Импульс** главного окна, отображение результатов соответствует описанию в разделе 6.9.

Характеристики формы импульса можно вывести на печать командой "Печать/ Результаты" или в отчетный файл командой меню "В файл/ Результаты", как показано на рисунке.

В открывшемся диалоговом окне необходимо выбрать цветное или черно-белое представление диаграмм и состав сохраняемой информации:

- флажок "Форма импульса" разрешает сохранение диаграмм формы положительного и отрицательного импульса;
- флажок "Осциллограмма" разрешает сохранение осциллограммы; при черно-белой печати количество точек по оси X слева и справа от линии курсора определяется возможностями принтера и может быть меньше диапазона, видимого на осциллограмме в окне анализа.

×

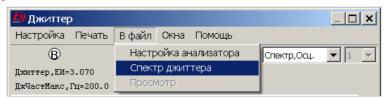

О Цветное

Первая команда записи "В файл / Результаты" создает следующие отчетные файлы:

- Impuls000.html текстовый файл, содержит идентификационную информацию сеанса и значения параметров, характеризующие форму положительного и отрицательного импульсов;
- Impuls000.bmp графический файл, содержит диаграмму формы импульсов;
- Impuls000Os.bmp графический файл, содержит осциллограмму.

Последующие команды записи сохраняют результаты в файлах Impuls001x, Impuls002x и т.д.

Имена сохраненных файлов отображаются в информационном окне.



Команда меню "В файл/ Просмотр" открывает отчетные файлы для редактирования и печати с помощью Microsoft Word.

Анализ джиттера

Окно анализа джиттера открывается кнопкой **Джиттер** главного окна, отображение результатов соответствует описанию в разделе 6.10.

Спектральную характеристику джиттера можно вывести на печать командой меню "Печать/ Спектр джиттера" или в отчетный файл командой "В файл/ Спектр джиттера", как показано на рисунке.

В файл результаты

Представление — © Черно-белое

В файл

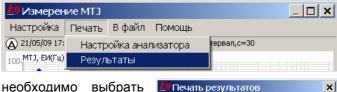
В открывшемся диалоговом окне нужно выбрать цветное или черно-белое представление диаграммы спектра.

Первая команда записи "В файл/ Спектр джиттера" создает следующие отчетные файлы:

- Jitter000.html текстовый файл, содержит идентификационную информацию сеанса и измеренные значения параметров джиттера;
- Jitter000.bmp графический файл, содержит диаграмму спектра.

Последующие команды записи сохраняют результаты в файлах Jitter001, Jitter002 и т.д.

Имена сохраненных файлов отображаются в информационном окне.


Зависимость размаха фазового дрожания от времени отображается в окне анализа временных диаграмм. Таблица измерений параметров Джиттер, ЕИ, ДжиттерПФ1, ЕИ, ДжиттерПФ2, ЕИ может быть сформирована с заданным временным интервалом и выведена на печать или в отчетный файл, как показано в разделе 10.4.4.

Команда меню "В файл/ Просмотр" открывает отчетные файлы для редактирования и печати с помощью Microsoft Word.

Характеристика МТЈ

Окно измерений MTJ открывается кнопкой **MTJ** главного окна, отображение результатов соответствует описанию в разделе 6.11.5.

Диаграмму МТЈ можно сохранить в отчетном файле командой меню "В файл/ Результаты" или вывести на печать командой меню "Печать/ Результаты", как показано на рисунке.

Представление

Печать

Черно-белое

Выводить графики

🔽 Выводить таблицы данных

С Цветное

В открывшемся диалоговом окне необходимо выбрать цветное или черно-белое представление диаграммы и состав сохраняемой информации:

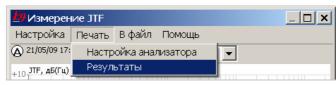
- флажок "Выводить графики" разрешает сохранение диаграммы мт. I.
- флажок "Выводить таблицы данных" разрешает сохранение табличного представления диаграммы.

Первая команда меню "В файл/ Результаты" создает следующие отчетные файлы:

- MTJ000.html текстовый файл, содержит идентификационную информацию сеанса и табличное представление диаграммы;
- MTJ000.bmp графический файл, содержит диаграмму МТЈ.

Последующие команды записи создают файлы МТЈ001, МТЈ002 и т.д.

Имена сохраненных файлов отображаются в информационном окне.



Команда меню "В файл/ Просмотр" открывает отчетные файлы для редактирования и печати с помощью Microsoft Word.

Характеристика JTF

Окно измерений JTF открывается кнопкой **JTF** главного окна, отображение результатов соответствует описанию в разделе 6.11.6.

Диаграмму JTF можно сохранить в отчетном файле командой меню "В файл/ Результаты" или вывести на печать командой меню "Печать/ Результаты", как показано на рисунке.

⁹Печать результатов

Выводить графики

Выводить таблицы данных

Представление

Печать

Черно-белое

×

О Цветное

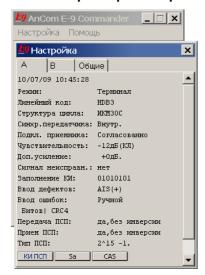
Выход

В открывшемся диалоговом окне необходимо выбрать цветное или черно-белое представление диаграммы и состав сохраняемой информации:

- флажок "Выводить графики" разрешает сохранение диаграммы JTF;
- флажок "Выводить таблицы данных" разрешает сохранение табличного представления диаграммы.

Первая команда записи "В файл/ Результаты" создает следующие отчетные файлы:

- JTF000.html текстовый файл, содержит идентификационную информацию сеанса и табличное представление диаграммы;
- JTF000.bmp графический файл, содержит диаграмму JTF.

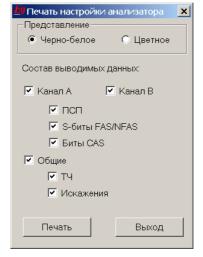

Последующие команды записи сохраняют диаграммы в файлах JTF001, JTF002 и т.д.

Имена сохраненных файлов отображаются в информационном окне.

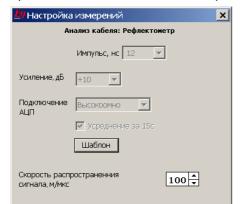
Команда меню "В файл/ Просмотр" открывает отчетные файлы для редактирования и печати с помощью Microsoft Word.

Параметры настройки анализатора

Информация о настройке измерительных каналов во время выполнения измерений отображается на вкладках "А", "В", "Общие" окна настройки, которое открывается командой меню "Настройка/ Настройка анализатора".

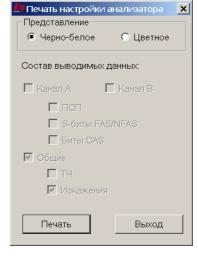

Параметры настройки можно вывести на печать командой меню "Печать/ Настройка анализатора" или записать в отчетный файл командой меню "В файл/ Настройка анализатора" из любого окна визуализации результатов измерений.

В открывшемся диалоговом окне нужно выбрать цветное или черно-белое представление и состав сохраняемой информации, как показано на рисунке справа (выбрана печать всех параметров):


Первая команда записи "В файл/ Настройка анализатора" создает файл Setup000.html.

Последующие команды сохраняют параметры настройки в отчетных файлах Setup001.html, Setup002.html и т.д. Имена сохраненных файлов отображаются в информационном окне.

В режиме анализа кабеля параметры настройки генератора и измерителя отображаются в представленном ниже окне, которое открывается кнопкой **Г/И** главного окна.

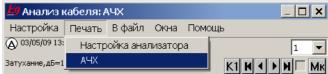

Параметры генератора и измерителя можно вывести на печать командой меню "Печать/ Настройка анализатора" или записать в отчетный файл командой "В файл/ Настройка анализатора" из окна визуализации результатов измерений.

В открывшемся диалоговом окне нужно выбрать цветное или чернобелое представление, как показано на рисунке справа.

Параметры настройки приемо-передатчика канала А в режиме измерения уровня рабочего сигнала Е1 можно

сохранить в отчетном файле или вывести на печать установкой соответствующих флажков в диалоговом окне.

Первая команда записи "В файл/ Настройка анализатора" создает файл Setup000.html. Последующие команды записи сохраняют параметры настройки в отчетных файлах Setup001.html, Setup002.html и т.д. Имена сохраняемых отчетных файлов отображаются в информационном окне.



Команда меню "В файл/ Просмотр" открывает отчетные файлы для редактирования и печати с помощью Microsoft Word.

Анализ кабеля: АЧХ

Окно измерений АЧХ открывается кнопкой **АЧХ** главного окна, отображение результатов соответствует описанию в разделе 8.4.1.

Диаграмму АЧХ можно сохранить в отчетном файле командой "В файл/ АЧХ" или вывести на печать командой меню "Печать/ АЧХ", как показано на рисунке.

В открывшемся диалоговом окне необходимо выбрать цветное или черно-белое представление диаграммы и состав сохраняемой информации:

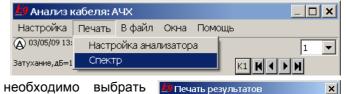
- флажок "Выводить графики" разрешает сохранение диаграммы АЧХ;
- флажок "Выводить таблицы данных" разрешает сохранение табличного представления диаграммы.

Первая команда записи "В файл/ АЧХ" создает следующие отчетные файлы:

- AFC000.html текстовый файл, содержит идентификационную информацию сеанса, параметры принятого МЧС и табличное представление АЧХ;
- AFC000.bmp графический файл, содержит диаграмму АЧХ.

Последующие команды записи сохраняют диаграммы в файлах АFC001, AFC002 и т.д.

Имена сохраненных файлов отображаются в информационном окне.



Команда меню "В файл/ Просмотр" открывает отчетные файлы для редактирования и печати с помощью Microsoft Word.

Анализ кабеля: Спектр

Окно измерений спектра открывается кнопкой **Спектр** главного окна, отображение результатов соответствует описанию в разделе 8.1.1.

Диаграмму спектра можно сохранить в отчетном файле командой меню "В файл/ Спектр" или вывести на печать командой "Печать/ Спектр", как показано на рисунке.

Представление

Печать

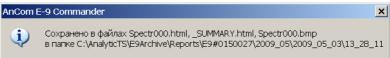
Черно-белое

Выводить графики

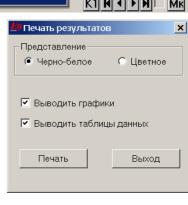
Г Выводить таблицы данных

Цветное

Выход

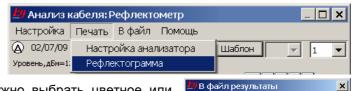

- В открывшемся диалоговом окне необходимо выбрать цветное или черно-белое представление диаграммы и состав сохраняемой информации:
- флажок "Выводить графики" разрешает сохранение диаграммы спектра;
- флажок "Выводить таблицы данных" разрешает сохранение табличного представления диаграммы.

Первая команда записи "В файл/ Спектр" создает следующие отчетные файлы:


- Spectr000.html текстовый файл, содержит идентификационную информацию сеанса, параметры входного сигнала и табличное представление спектра;
- Spectr000.bmp графический файл, содержит диаграмму спектра.

Последующие команды записи сохраняют диаграммы в файлах Spectr001, Spectr002 и т.д.

Имена сохраненных файлов отображаются в информационном окне.


Команда меню "В файл/ Просмотр" открывает отчетные файлы для редактирования и печати с помощью Microsoft Word.

Анализ кабеля: Рефлектограмма

Окно рефлектограмм открывается кнопкой **Рефлект.** главного окна, отображение результатов соответствует описанию в разделе 8.5.1.

Рефлектограмму можно сохранить в отчетном файле командой меню "В файл/ Рефлектограмма" или вывести на печать командой "Печать/ Рефлектограмма", как показано на рисунке.

Представление

В файл

Чепно-белое

С Цветное

Выход

В открывшемся диалоговом окне нужно выбрать цветное или черно-белое представление рефлектограммы.

Первая команда записи "В файл/ Рефлектограмма" создает следующие отчетные файлы:

- Refl000.html текстовый файл, содержит идентификационную информацию сеанса и параметры измерительного сигнала;
- Refl000.bmp графический файл, содержит рефлектограмму.

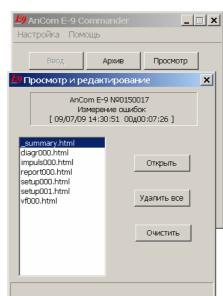
Последующие команды записи сохраняют результаты в файлах Refl001, Refl002 и т.д.

Имена сохраненных файлов отображаются в информационном окне.

Команда меню "В файл/ Просмотр" открывает отчетные файлы для редактирования и печати с помощью Microsoft Word.

о Просмотр и редактирование отчетных файлов

Кнопка **Просмотр** главного окна и команда меню "В файл/ Просмотр" окон визуализации результатов измерений выводят на экран диалоговое окно "Просмотр и редактирование", позволяющее открывать или удалять отчетные файлы, созданные при анализе сеанса¹.


В приведенном ниже примере для сеанса измерения ошибок были сохранены в отчетных файлах некоторые результаты измерений и параметры настройки анализатора. Представленное на рисунке диалоговое окно "Просмотр и редактирование" содержит список всех созданных отчетных файлов:

- _summary.html комплексный отчет;
- report000.html отчет о результатах измерения ошибок;
- diagr000.html временные диаграммы и таблицы;
- setup000.html параметры настройки каналов А, В;
- Impuls000.html результаты анализа формы импульса;
- setup001.html параметры настройки генератора сигнала ТЧ, КИ передачи и приема;
- vf000.html результаты измерения сигнала ТЧ.

Кнопка Открыть открывает выбранный отчетный файл для просмотра, редактирования и печати с помощью программы Microsoft Word.

Кнопка Очистить удаляет отчетные файлы, созданные для открытого в данный момент сеанса измерений, что позволяет начать заново формирование комплексного отчета.

Кнопка Удалить все удаляет все отчетные файлы, созданные для всех сеансов измерений в директории "E9Archive\Reports".

¹ Кнопка и команда меню недоступны, если сеанс закрыт или не созданы отчетные html-файлы.

Транспортирование, хранение, консервация

Транспортирование и хранение

Транспортирование и хранение анализатора должно производиться в штатной упаковке при соблюдении следующих требований на величины климатических и механических воздействий:

Наименование допустимого внешнего воздействия	Рабочие условия применения и хранения анализатора в штатной упаковке	Предельные условия транспортирования анализатора в штатной упаковке
Диапазон температур окружающего воздуха, °C	+5+40	-25+55
Влажность окружающего воздуха при температуре 25°С не более, %	90	95
Атмосферное давление, кПа (мм рт.ст)	70106,7 (537800)	70106,7 (537800)
Транспортная тряска	-	80÷120 ударов в минуту с макс.ускорением 30 м/с² при длительности до 1 часа

Через каждые 1.5 месяца хранения анализатор должен быть подвергнут обязательной зарядке встроенного аккумулятора. Продолжительность зарядки при хранении и перед использованием после снятия с хранения должна составлять не менее 4 часов.

о Консервация

В	случае	долговременн	ого хранения	а анал	пизатора	(более	6	месяце	в) необходимо
подвергн	іуть анал	изатор консерв	ации:						
отви	інтить кры	ышку \varTheta нижне	й панели анал	іизатор	а (см. раз	дел 3.1.3	3);		
	•	едварительно ие», из корпуса	•		аккумулят	оров д	виж	ением,	напоминающим
	•	ие», из корпуса ышку Ө анали	• '						
зави	ІНТИТЬ КОЕ	ышку 🥽 анали	затора хранит	гь аккуг	иупяторы	отлепьн	Ο.		

Расконсервация

	После долговременного хранения, перед началом эксплуатации анализатор должен быть
ПОД	двергнут расконсервации:
	отвинтить крышку 🖯 нижней панели анализатора (см. раздел 3.1.3);
	вставить блок аккумуляторов в корпус анализатора плавным движением без усилий, соблюдая ориентацию блока аккумуляторов по надписям «верх» и «низ»;
	завинтить крышку 🖯 анализатора.

Техническое обслуживание, ремонт

Техническое обслуживание состоит в периодическом внешнем осмотре с целью выявления возможных неисправностей соединительных кабелей, анализатора или сетевого адаптера. В случае обнаружения загрязнений поверхности сенсорного экрана их следует удалить салфеткой для очистки LCD-экранов или нейтральным моющим средством.

Ремонт анализатора осуществляется предприятием-изготовителем. Адрес предприятияизготовителя приведен в соответствующем разделе формуляра и на странице http://www.analytic.ru/company/contacts/.

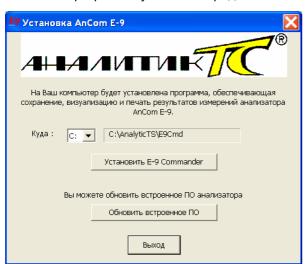
. Поверка

Анализатор подвергается первичной и периодическим поверкам в соответствии с методикой поверки 4221-015-11438828-08МП.

Формирование последовательности «Все 1» для проверки метрологических характеристик в разделе 7.3 МП осуществляется в соответствии с описанием в разделе 5.5 настоящего руководства.

Модернизация

Модернизация встроенного программного обеспечения не влияющего на метрологические характеристики


Анализатор имеет возможность модернизации встроенного программного обеспечения (ВПО). Сведения о произведенных доработках и актуальные версии ВПО и РЭ содержатся на странице www.analytic.ru.

Для модернизации ВПО необходим компьютер под управлением Windows XP¹, Windows Vista или Windows 7 с USB-портом для подключения анализатора. Модернизацию можно выполнить двумя способами:

получить новый поставочный CD-ROM «Аналитик-TC», в меню автозапуска выбрать пункт «Анализатор AnCom E-9», далее выбрать «Установка СПО E-9»;

скопировать со страницы www.analytic.ru «AnCom E-9. Документация и ПО» новый пакет СПО анализатора и запустить **e9 pNNN.exe.**

Окно программы установки представлено ниже на рисунке:

Анализатор должен быть во включенном состоянии, программы **AnCom E-9** и **Help** должны быть **закрыты**.

Соедините кабелем USB разъем USB Client на нижней панели анализатора и USB Host компьютера. Описание установления соединения представлено в разделе 10.2.1.

Индикатор В нижней строке экрана ПК означает, что связь установлена и можно выполнить обновление встроенного ПО нажатием кнопки Обновить встроенное ПО в окне программы установки.

Удаление текущей версии ВПО и установка новой версии занимают ~ 3-5 мин.

о Установка и обновление программы E-9 Commander

Программа устанавливается на компьютер под управлением Windows XP, Windows Vista или Windows 7 с USB-портом для подключения анализаторов. Желательно иметь не менее 2 ГБ свободной памяти на локальном диске, что соответствует объему внутренней памяти одного анализатора. Данный объем памяти обеспечит хранение результатов за 1 год измерений по двум каналам с интервалом 1 с.

Установку и обновление версий можно выполнить двумя способами:

получить новый поставочный CD-ROM «Аналитик-TC», в меню автозапуска выбрать пункт «Анализатор AnCom E-9», далее выбрать «Установка СПО E-9»;

скопировать со страницы www.analytic.ru «AnCom E-9. Документация и ПО» новый пакет СПО анализатора и запустить **e9 pNNN.exe**.

Окно программы установке представлено выше на рисунке. Необходимо указать локальный диск, на котором будет размещен архив и E-9 Commander. Рекомендуется выбрать диск с наибольшим запасом свободной памяти и нажать кнопку Установить E-9 Commander.

Программа установки создает ярлыки вызова в меню "**пуск**" и на рабочем столе. Архив создается в директории C:\AnalyticTS\E9Archive при первом считывании результатов измерений.

Необходимо установить также Microsoft ActiveSync, если эта программа отсутствует на ПК под управлением Windows XP и предполагается ввод измерений от анализаторов в архив ПК по кабелю USB.

Удаление программы AnCom E-9 Commander выполняется вручную, с помощью удаления директории C:\AnalyticTS\E9Cmd и ярлыков вызова на рабочем столе и в меню "**пуск**".

¹ На компьютере под управлением Windows XP должен быть установлен Microsoft ActiveSync.

94 AnCom E-9

-

Приложения

Приложение 1. Критерии установки и сброса аварийных сигналов

		· · · · · · · · · · · · · · · · · · ·	
Аварийный сигнал	Критерий установки	Критерий сброса	Рек. МСЭ-Т
LOS	Отсутствие импульсов входного сигнала за время приема 255 бит (125 мкс)	Обнаружение 32 и более импульсов входного сигнала за время приема 255 бит (125 мкс)	G.775 П.4.2
AIS	Обнаружение двух и менее нулевых бит в двух принятых последовательно циклах	Обнаружение трех и более нулевых бит в двух принятых последовательно циклах	G.775 П.5.2
LOF	Последовательный прием в КИ0 трех ошибочных FAS или трех ошибочных NFAS	Последовательный прием в КИО сигналов FAS, NFAS, FAS	G.706 п.4.1.1 п.4.1.2
LOM CAS	Последовательный прием в КИ16 двух ошибочных MFAS	Обнаружение в КИ16 сигнала MFAS, при условии, что предшествующее КИ16 не содержит значение "00000000"	G.732 п.5.2
LOM CRC	Обнаружение 915 и более ошибок CRC-4 из 1000 принятых	Обнаружение в КИО двух сигналов сверхцикловой синхронизации CRC-4 за 8 мс	G.706 п.4.2 п.4.3.2
RAI	Последовательный прием в КИ0 трех NFAS.bit3=1	Последовательный прием в КИО менее двух NFAS.bit3=1	O.162 п.2.1.4
MRAI	Последовательный прием трех КИ16.bit6=1 в цикле 0 СЦ CAS	Последовательный прием менее двух КИ16.bit6=1 в цикле 0 СЦ CAS	O.162 п.2.1.4
PL	Обнаружение 6-ти и более ошибок в 64 битах последовательности ¹	Прием 32 бит последовательности без обнаружения ошибок	-

Приложение 2. Способы формирования аварийных ситуаций

Аварийная ситуация	Способ формирования
LOS	Прекращение передачи импульсов выходного сигнала
AIS	Передача последовательности всех "1"
LOF	Передача ошибочного значения циклового синхросигнала FAS в КИ0
LOM CAS	Передача последовательности всех "1" в КИ16
LOM CRC	Передача признака ошибки во всех битах CRC-4
RAI	Передача NFAS.bit3=1 в КИ0
MRAI	Передача КИ16.bit6=1 в цикле 0 сверхцикла CAS
PL	Ввод ошибок битов испытательной последовательности с коэффициентом 10 ⁻¹
UNFR 01	Передача последовательности "0101"

Приложение 3. Измеряемые параметры сигнала 2048 кбит/с

Обозначение	Описание				
Параметры сигнала 204	18 кбит/c				
ОтклЧастоты, Гц	Отклонение частоты следования бит от номинального значения 2048000 Гц				
Уровень, дБ	Уровень входного сигнала, измеренный относительно номинального уровня формируемого сигнала с амплитудой импульсов U = 3 В				
Анализ джиттера	Анализ джиттера				
Джиттер, ЕИ	Размах фазового дрожания в диапазоне частот 8Гц122кГц				
ДжиттерПФ1, ЕИ	Размах фазового дрожания в диапазоне частот 20Гц100кГц				
ДжиттерПФ2, ЕИ	Размах фазового дрожания в диапазоне частот 18кГц100кГц				
ДжЧастМакс, Гц	Частота максимального спектрального отсчета фазового дрожания				

¹ Проскальзывание бита последовательности приводит к кратковременному обнаружению PL.

AnCom E-9 95

-

Спектр, ЕИ(Гц)	Спектральная зависимость фазового дрожания от частоты в диапазоне частот от 8 Гц до 122 кГц
Осциллограмма, ЕИ(мкс)	Осциллограмма фазового дрожания, время развертки 64 мс
Анализ формы импульс	a
ПИ, В(нс) ОИ, В(нс)	Форма положительного (ПИ) и отрицательного (ОИ) импульса
Осциллограмма, В(нс)	Осциллограмма входного сигнала в буфере приема АЦП, время развертки 25 мкс
Затухание, дБ	Затухание амплитуды импульсов входного сигнала относительно номинальной амплитуды U = 3 В
БалансЭнер, ед	Отношение энергии положительного и отрицательного импульса
БалансАмпл, ед	Отношение амплитуды положительного и отрицательного импульса
БалансДлит, ед	Отношение длительности положительного и отрицательного импульса
АмплитудаПИ, В	Амплитуда положительного импульса
ДлительнПИ, нс	Длительность положительного импульса на уровне половины амплитуды
ФронтПИ, нс	Время нарастания положительного импульса от 10% до 90% амплитуды
СпадПИ, нс	Время спада положительного импульса от 90% до 10% амплитуды
АмплитудаОИ, В	Амплитуда отрицательного импульса
ДлительнОИ, нс	Длительность отрицательного импульса на уровне половины амплитуды
ФронтОИ, нс	Время нарастания отрицательного импульса от 10% до 90% амплитуды
СпадОИ, нс	Время спада отрицательного импульса от 90% до 10% амплитуды
Отметка соответствия	ОК -форма импульса соответствует маске;
маске	ERR -форма импульса не соответствует маске
Измерение задержки ра	спространения формируемых битовых последовательностей
Задержка, ЕИ	Задержка распространения, ЕИ
Задержка, мс	Задержка распространения, мс

Приложение 4. Измеряемые показатели ошибок

	приложение 4. измер	яемые показатели ошиоок				
Обозначение	Описание					
Количество ошибок за период измерений						
Ошибки Битов	Счетчик ошибок битов испытательной последо	зательности				
Ошибки Кода	Счетчик нарушений последовательности измен	ения полярности импульсов				
Ошибки FAS	Счетчик ошибок циклового синхросигнала FAS					
Ошибки MFAS	Счетчик ошибок сверхциклового синхросигнала	MFAS				
Ошибки CRC4	Счетчик ошибок CRC-4					
Ошибки E-bit	Счетчик ошибок CRC-4 на удаленной стороне					
Коэффициенты ошибок	за период Тизм, с					
Кош Битов (BER)	Ошибки Битов / Количество битов испытательн	ой последовательности				
Кош Кода	Ошибки Кода / 2048000 * (Тизм – TLos)					
Кош FAS	Ошибки FAS / 4000 *(Тизм – TLOS – TAIS –TLOF)					
Кош MFAS	Сош MFAS Ошибки MFAS / 500 *(Тизм – TLos – TAIS –TLOF – TLOM_CAS)					
Кош CRC4 Ошибки CRC4 / 1000 *(Тизм – TLos – TAIS –TLOF)						
Кош E-bit Ошибки E-bit / 1000 *(Тизм – TLos – TAIS –TLOF)						
Количество секунд с обы	наруж. аварийных ситуаций за период Тизм, с	% секунд				
Секунды LOS (TLos)	Количество секунд с обнаружением LOS	(TLOS / Тизм)*100%				
Секунды AIS (Tais)	Количество секунд с обнаружением AIS	(Tais / Тизм)*100%				
Секунды LOF (TLOF)	Количество секунд с обнаружением LOF	(TLOF / Тизм)*100%				
Секунды LOM (TLOM)	Количество секунд с обнаружением LOM CAS	(ТLOM / Тизм)*100%				
Секунды LOM CRC	Количество секунд с обнаружением LOM CRC	(Секунды LOM CRC / Тизм)*100%				
Секунды RAI (Trai)	Количество секунд с обнаружением RAI	(Ткаі / Тизм)*100%				
Секунды MRAI (Тмкаі) Количество секунд с обнаружением MRAI		(Тмкаі / Тизм)*100%				
Секунды PL (ТРL) Количество секунд с обнаружением PL (ТРL / Тизм)*100%						
Проскальзывания входн	Проскальзывания входного сигнала относительно синхросигнала на входе SYNC или RxA					
Проскальзывание	Проскальзывание в битах, от минус 255 до плю	c 255				
Цикл+	Количество повторений цикла (входной сигнал медленнее синхросигнала)					
Цикл-	Количество пропусков цикла (вхо	дной сигнал быстрее синхросигнала)				

05	0	A 2- t 4 -			
Обозначение	Описание	Аномалии и дефекты за 1 с			
	ибок согласно рек. G.821	Own Furna - O			
ES	Секунды с ошибками	Ошибки Битов > 0			
ES + SES	Секунды, пораженные ошибками	BER $\geq 10^{-3}$, LOS, AIS, LOF ¹ , PL			
ESR	Коэффициент ошибок по секундам				
SESR	Коэффициент ошибок по секундам, пораженным ошиб	ками			
AS	Период готовности (секунды готовности)				
US	Период неготовности (секунды неготовности)				
ASR	Отношение периода готовности к продолжительности и	измерений			
USR	Отношение периода неготовности к продолжительност	и измерений			
Показатели ош	ибок согласно рек. G.826				
ES	Секунды с ошибками (ближняя сторона)	Ошибки CRC4 > 0			
ES + SES	Секунды, пораженные ошибками	Ошибки CRC4 ≥ 300, LOS, AIS, LOF			
BBE	Количество блоков с фоновыми ошибками				
ESR	Коэффициент ошибок по секундам				
SESR	Коэффициент ошибок по секундам, пораженным ошиб	ками			
BBER	Коэффициент ошибок по блокам с фоновыми ошибкам	и: BBER = BBE / (AS - SES)*1000			
ES	Секунды с ошибками (дальняя сторона)	Ошибки E-bit > 0			
SES	Секунды, пораженные ошибками	Ошибки E-bit ≥ 300, RAI			
BBE	Количество блоков с фоновыми ошибками	0 = 10 = 10 = 10 = 10 = 10 = 10 = 10 =			
ESR	Коэффициент ошибок по секундам				
SESR	Коэффициент ошибок по секундам, пораженным ошиб	ками			
BBER	Коэффициент ошибок по блокам с фоновыми ошибкам				
	Период готовности (секунды готовности)	M. BBER - BBE / (A0 - 3E3) 1000			
AS					
US	Период неготовности (секунды неготовности)				
ASR	Отношение периода готовности к продолжительности и	<u> </u>			
USR	Отношение периода неготовности к продолжительност	и измерении			
	ибок согласно рек. М.2100 без СКС-4	Owner FAC . O			
ES	Секунды с ошибками (ближняя сторона)	Ошибки FAS > 0			
ES + SES	Секунды, пораженные ошибками	Ошибки FAS ≥ 28, LOS, AIS, LOF			
ESR	Коэффициент ошибок по секундам				
SESR	Коэффициент ошибок по секундам, пораженным ошиб				
ES	Секунды с ошибками (дальняя сторона)	RAI			
ES + SES	Секунды, пораженные ошибками	RAI			
ESR	Коэффициент ошибок по секундам				
SESR	Коэффициент ошибок по секундам, пораженным ошиб	ками			
AS	Период готовности (секунды готовности)				
US	Период неготовности (секунды неготовности)				
ASR	Отношение периода готовности к продолжительности і	измерений			
USR	Отношение периода неготовности к продолжительност	и измерений			
	ибок согласно рек. M.2100 с CRC-4				
ES	Секунды с ошибками (ближняя сторона)	Ошибки CRC4 > 0			
ES + SES	Секунды, пораженные ошибками	Ошибки CRC4 ≥ 805, LOS, AIS, LOF			
ESR	Коэффициент ошибок по секундам				
SESR	Коэффициент ошибок по секундам, пораженным ошиб	ками			
ES	Секунды с ошибками (дальняя сторона)	Ошибки E-bit > 0			
	Секунды, пораженные ошибками	Ошибки E-bit ≥ 805, RAI			
ES + SES	Коэффициент ошибок по секундам				
ES + SES ESR	коэффициент ошиоок по секундам				
	коэффициент ошибок по секундам пораженным ошибок по секундам, пораженным ошибок по секундам, пораженным ошибок по секундам, пораженным ошибок по секундам, пораженным ошибок по секундам.	ками			
ESR	· · ·	ками			
ESR SESR	Коэффициент ошибок по секундам, пораженным ошиб	ками			
ESR SESR AS	Коэффициент ошибок по секундам, пораженным ошиб Период готовности (секунды готовности)				

 $^{^{1}}$ В режиме тестирования N $_{ imes}$ 64 кбит/с.

Приложение 6. Параметры негармонических сигналов ТЧ, формируемых анализатором

Многочастотный сигнал (**МЧС**) представляет собой сумму гармонических сигналов с одинаковыми амплитудами. Номинальные значения частот составляют ряд {100, 200, ..., 100+100i,..., 3800} Гц, где i - номер гармонического сигнала от 0 до 37. Пик-фактор МЧ-сигнала составляет 7.3 дБ.

Псевдослучайный сигнал согласно рек. МСЭ-Т О.131 (**О.131**) представляет собой сумму гармонических сигналов с одинаковыми амплитудами. Номинальные значения частот составляют ряд {350; 356.25;...; 350+6.25i;...; 550} Гц, где i - номер гармонического сигнала от 0 до 32. Пикфактор О.131-сигнала составляет 10.5 дБ.

Оценка качества передачи речи в соответствии с рек. МСЭ-Т **P.862** выполняется по фрагментам речи, представленным файлами в формате .WAV. Диапазон установки максимального пикового мгновенного уровня передачи фрагментов речи: от минус 40 до 10 дБ.

Приложение 7. Параметры сигналов ТЧ, определяемые анализатором

Обозначение	Описание
Измерения по гармониче	
Частота,Гц	Частота гармонического сигнала
ИзмЧастоты,Гц	Изменение частоты в канале
Сигнал,дБм0	Уровень гармонического сигнала
Затухание,дБ	Затухание гармонического сигнала относительно уровня генератора
•	Уровень шума в полосе анализа с подавлением сигнала (шум с тоном).
Шум,дБм0	Шум,дБм0=Сигнал,дБм0-Сиг/Шум,дБм0
ШумПс,дБм0	Уровень взвешенного шума с подавлением сигнала (взвешенный шум с тоном). Вычисляется исходя из частотного спектра шума с взвешиванием по заданной характеристике взвешивания
Сиг/Шум,дБ	Защищенность сигнала в полосе анализа: соотношение уровня гармонического сигнала и уровня шума в полосе анализа
Сиг/ШумПс,дБ	Защищенность сигнала от взвешенных шумов - соотношение уровня гармонического сигнала и уровня взвешенного шума
А2,дБ	Затухание 2-й гармоники относительно основной
АЗ,дБ	Затухание 3-й гармоники относительно основной
А2+3,дБ	Затухание суммы 2-й и 3-й гармоник относительно основной
Спектр,дБм0(Гц)	Распределение уровня мощности измеряемого сигнала по частоте
Осциллограмма,ед(мс)	Осциллограмма сигнала
Измерения по двухчастот	гному сигналу (Sin2)
Частота,Гц	Частота 1-й составляющей двухчастотного сигнала (f1)
Частота2,Гц	Частота 2-й составляющей двухчастотного сигнала (f2>f1)
Сигнал,дБм0	Уровень 1-й составляющей двухчастотного сигнала
Сигнал2,дБм0	Уровень 2-й составляющей двухчастотного сигнала
Шум,дБм0	Уровень шума в полосе анализа с подавлением двухчастотного сигнала
Сиг/Шум,дБ	Защищенность сигнала в полосе анализа: соотношение суммарного уровня двухчастотного сигнала и уровня шума в полосе анализа
Спектр,дБм0(Гц)	Распределение уровня мощности измеряемого сигнала по частоте
Осциллограмма,ед(мс)	Осциллограмма сигнала
Измерения по псевдослуч	найному сигналу (О.131)
Сигнал,дБм0	Уровень псевдослучайного сигнала
Затухание,дБ	Затухание псевдослучайного сигнала относительно уровня генератора
Шум,дБм0	Уровень шума в полосе анализа с подавлением псевдослучайного сигнала
Сиг/Шум,дБ	Защищенность сигнала в полосе анализа: соотношение уровня псевдослучайного сигнала и уровня шума в полосе анализа
Спектр,дБм0(Гц)	Распределение уровня мощности измеряемого сигнала по частоте
Осциллограмма,ед(мс)	Осциллограмма сигнала
Измерения по многочасто	отному сигналу (МЧС)
Сигнал,дБм0	Суммарный уровень гармоник МЧС в полосе анализа (3003400 Гц)
Затухание,дБ	Затухание суммарного уровня гармоник МЧС относительно уровня генератора
Сиг/Шум,дБ	Защищенность МЧС в полосе анализа: среднее арифметическое выраженных в дБ значений защищенности гармоник МЧС в полосе анализа
АЧХ,дБ(Гц)	Относительная частотная характеристика затухания ¹
С/Ш,дБ(Гц)	Частотная характеристика защищенности (сигнал/шум)
Спектр,дБм0(Гц)	Распределение уровня мощности измеряемого сигнала по частоте
Осциллограмма,ед(мс)	Осциллограмма сигнала
	измерительного сигнала или при нераспознавании сигнала (Шум)
Шум,дБм0	Уровень шума (собственный шум канала связи)
ШумПс,дБм0	Уровень взвешенного шума
Спектр,дБм0(Гц)	Диаграмма распределения уровня мощности измеряемого шума по частоте
Осциллограмма,ед(мс)	Осциллограмма сигнала
- 3413 3 131 Palvilvia, CH(IVIO)	

 $^{^{1}}$ АЧХ представляется относительно затухания на опорной частоте 1020 Гц.

Приложение 8. Оценка качества передачи речи (Р.862)

Обозначение	Описание		Диапазон
LQ,балл	Оценка качества прослушивания (Listening C системе согласно рек. МСЭ-Т Р.862	0.04.500	
MOS,балл	Средняя экспертная оценка разборчивости ре Score) по 5-бальной системе в соответствии	ечи (Mean Opinion с рек. МСЭ-Т Р.862.1	1.04.549
Образец(с),дБ	Временные диаграммы речевой активности относительно уровня шума на интервалах вне речевой активности соответственно		0100
Принято(с),дБ	Образцового (переданного) и Принятого сигна	0 100	
Потери(с),шт	Временные диаграммы флагов потерянных фреймов ¹ и		01
Ошибки(с),шт	искаженных фреймов (фреймов с ошибками)	01	
Задержка(с),мс	Временная диаграмма относительной задерж	минус 500500	
20-07-1-1-1	Распределение доли вероятности в «%»	по доле значений, %	0100
ЗадержкаГист,%(мс)	задержки передачи как случайной величины в «мс»	по задержке, мс	минус 500500
ЗадержкаРазмах,мс	Размах дрожания задержки передачи – разность максимального и минимального значений задержки передачи (джиттер задержки)		0500
ЗадержкаСКО,мс	Среднеквадратичное отклонение задержки передачи от среднего значения		0500
Потери,ед			0.01.0
Ошибки,ед	Доли потерянных фреймов и искаженных фре	SNIMOR COOTRETCTREHHO	0.01.0
АЧХ,дБ(Гц)	Относительная частотная характеристика зат частот 3003400 Гц ²	ухания в диапазоне	минус 1240

1

¹ При сопоставлении образцового и принятого речевых фрагментов они разбиваются на фреймы по 32 мс. Для каждого фрейма образца отыскивается соответствующий фрейм в принятом фрагменте. Если результат поиска отрицательный, то фрейм считается **потерянным**. Если фрейм найден, но его качество ниже определенного порога, то он считается **искаженным**.

² АЧХ представляется относительно затухания на опорной частоте 1020 Гц.

Приложение 9. Эталонные фрагменты речи в формате .WAV

Оценка качества передачи речи в соответствии с рек. МСЭ-Т Р.862 выполняется по фрагментам живой речи, представленным файлами в формате .WAV:

цотавлен	ным фа	йлами в формате .WAV:	1
Пол диктора	Длит., с	Произносимый текст	Норм. источ- ник
Муж.	8,9	Анализаторы AnCom - оценка передачи речи, контроль сетей, систем и каналов связи.	
Муж.	15,9	Анализаторы AnCom - оценка передачи речи, контроль сетей, систем и каналов связи. Параметризация устойчивости функционирования сети связи общего пользования.	
Муж.	24,3	Анализаторы AnCom - оценка передачи речи, контроль сетей, систем и каналов связи. Параметризация устойчивости функционирования сети связи общего пользования. Измерение доли несостоявшихся вызовов, контроль эхо и качества сети общего пользования.	Анали
Жен.	4,8	R hyrmy c mang uanomon comenar	
Муж.	4,4	В булту с моря нилетел ветерок.	
Жен.	8,2	В бухту с моря налетел ветерок.	
Муж.	7,9	Дно у реки хорошее.	∞
Жен.	11,6	В бухту с моря налетел ветерок.	= = = = = = = = = = = = = = = = = = = =
Муж.	11,4	Мальчик побежал к лагерю.	азь
Жен.	15,4	В бухту с моря налетел ветерок. Лно v реки хорошее.	ф –
Муж.	15,5	Мальчик побежал к лагерю. Сигнал тревоги поднял отряд.	а Д.1
Жен.	19,0	В бухту с моря налетел ветерок. Дно у реки хорошее.	аблип-
Муж.	19,7	Мальчик побежал к лагерю. Сигнал тревоги поднял отряд. Прошло всего несколько минут.	рраз. Т
Жен.	23,6	В бухту с моря налетел ветерок. Дно у реки хорошее.	Таблицы фраз. Таблица Д.1 – Фразы 1…8
Муж.	23,8	мальчик пооежал к лагерю. Сигнал тревоги поднял отряд. Прошло всего несколько минут. Штурман просил продолжать разворот.	ие Д. Таб
Жен.	28,0	В бухту с моря налетел ветерок. Дно у реки хорошее. Мальчик побежал к лагерю.	 ГОСТ Р 50840-95. Приложение Д
Муж.	28,1	Сигнил тревоги поонял отряю. Прошло всего несколько минут. Штурман просил продолжать разворот. Ледяная вода сводила руки.	0840-95.
Жен.	31,2	В бухту с моря налетел ветерок. Дно у реки хорошее. Мальчик побежал к лагерю. Сигнал тревоги поднял отряд.	FOCT P 5
Муж.	32,2	Прошло всего несколько минут. Штурман просил продолжать разворот. Ледяная вода сводила руки. Лошадь тихонько пофыркивала.	
	Пол диктора Муж. Муж. Жен. Муж. Жен. Муж. Жен. Муж. Жен. Муж. Жен. Муж. Муж.	Пол диктора Длит., с Муж. 15,9 Муж. 24,3 Жен. 4,8 Муж. 4,4 Жен. 11,6 Муж. 11,4 Жен. 15,4 Муж. 15,5 Жен. 19,0 Муж. 23,6 Муж. 23,8 Жен. 28,0 Муж. 28,1 Жен. 31,2 Жен. 31,2	Поп диктора Дпит. с Произносимый текст Муж. 8.9 Амализаторы АлСот - оценка передачи речи, контроль сетей, систем и каналов связи. Муж. 15.9 Анализаторы АлСот - оценка передачи речи, контроль сетей, систем и каналов связи. Муж. 24.3 Анализаторы АлСот - оценка передачи речи, контроль сетей, систем и каналов связи. Муж. 24.4 Анализаторы АлСот - оценка передачи речи, контроль сетей, систем и каналов связи. Инференце доли несостоявшихся вызовов, контроль эхо и качества сети общего пользования. Нараметризация устойчивости функционирования сети связи общего пользования. Жен. 4.8 В бухту с моря налетел ветерок. Муж. 11.6 В бухту с моря налетел ветерок. Муж. 11.4 В бухту с моря налетел ветерок. Муж. 15.4 В бухту с моря налетел ветерок. Муж. 15.5 Мальчик побежал к лагерю. Муж. 19.0 В бухту с моря налетел ветерок. Дио у реки хорошее. Мальчик побежал к лагерю. Муж. 23.6 В бухту с моря налетел ветерок. Муж. 23.8 В бухту с моря налетел ветерок. Дио у реки хорошее. Мальчик побежал к лагер

 1 Зарезервировано для дальнейшего использования.

Приложение 10. Структура сверхцикла CRC-4 (ИКМ30C, ИКМ31C)

Номер цикла	КИО	Бит	Бит	Бит	Бит	Бит	Бит	Бит	Бит
		1 (Si)	2	3	4	5	6	7	8
0	FAS	C ₁	0	0	1	1	0	1	1
1	NFAS	0	1	Α	S_{a4}	S _{a5}	S_{a6}	S _{a7}	S _{a8}
2	FAS	C ₂	0	0	1	1	0	1	1
3	NFAS	0	1	Α	S_{a4}	S _{a5}	S_{a6}	S_{a7}	S _{a8}
4	FAS	Сз	0	0	1	1	0	1	1
5	NFAS	1	1	Α	S_{a4}	S _{a5}	S_{a6}	S_{a7}	S_{a8}
6	FAS	C ₄	0	0	1	1	0	1	1
7	NFAS	0	1	Α	S_{a4}	S _{a5}	S_{a6}	S_{a7}	S_{a8}
8	FAS	C ₁	0	0	1	1	0	1	1
9	NFAS	1	1	Α	S_{a4}	S _{a5}	S_{a6}	S _{a7}	S _{a8}
10	FAS	C ₂	0	0	1	1	0	1	1
11	NFAS	1	1	Α	S_{a4}	S _{a5}	S_{a6}	S _{a7}	S _{a8}
12	FAS	C ₃	0	0	1	1	0	1	1
13	NFAS	E	1	Α	S_{a4}	S _{a5}	S_{a6}	S_{a7}	S _{a8}
14	FAS	C ₄	0	0	1	1	0	1	1
15	NFAS	Е	1	Α	S_{a4}	S _{a5}	S_{a6}	S _{a7}	S _{a8}

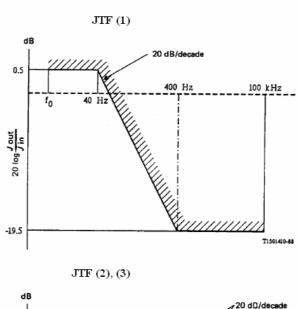
Si-бит FAS: $C_1 \, C_2 \, C_3 \, C_4 \, C_1 \, C_2 \, C_3 \, C_4 \, - CRC\text{--}4$, CRC-4

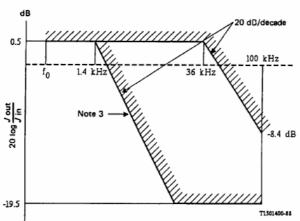
Si-бит NFAS: 0 0 1 0 1 1 E E — MFAS CRC, E-bit, E-bit (0=error)

A-бит NFAS: Remote alarm bit (1=alarm)

Приложение 11. Структура сверхцикла CAS (ИКМ30C, ИКМ30)

Номер цикла	Биты 1-4 КИ16	Биты 5-8 КИ16		
0	0 0 0 0 (MFAS)	xYxx		
1	abcd CK01	abcd CK16		
2	abcd CK02	abcd CK17		
3	abcd CK03	abcd CK18		
4	abcd CK04	abcd CK19		
5	abcd CK05	abcd CK20		
6	abcd CK06	abcd CK21		
7	abcd CK07	abcd CK22		
8	abcd CK08	abcd CK23		
9	abcd CK09	abcd CK24		
10	abcd CK10	abcd CK25		
11	abcd CK11	abcd CK26		
12	abcd CK12	abcd CK27		
13	abcd CK13	abcd CK28		
14	abcd CK14	abcd CK29		
15	abcd CK15	abcd CK30		


х: резервные биты


Y: Multiframe alarm bit (1=alarm)

Приложение 12. Шаблон максимально допустимого входного джиттера (2048 кбит/с)

Frequency f (Hz)	Requirement (pk-pk phase amplitude)
1.67 < f ≤ 20	15 f ⁻¹ μs
20 < f ≤ 2.4 k	1.5 UI
$2.4 \text{ k} < \text{f} \le 18 \text{ k}$	$3.6 \times 10^3 \text{ f}^{-1} \text{ UI}$
$18 k < f \le 100 k$	0.2 UI

Приложение 13. Шаблоны передаточной характеристики джиттера (2048 кбит/с)

Приложение 14. Итоговый отчет о измерении показателей ошибок

AnCom E-9 №0150017 Измерение ошибок Сеанс 27/05/09 19:35:36 00д01:54:19

Комментарий: Простой тракт СМП, L=2080км

Итоговый отчет

Ввод в эксплуатацию, 1день

Канал А: Не принят

Нормируемые параметры		Решение
G.821 и M.2100 по BER	1	Не принят

Канал В: Не принят

Нормируемые параметры	Решение
G.821 и M.2100 по BER	! Не принят

Нормы

Число участков = 1 1. СМП 2080км.

Доля нормы,% = 5.000

ES: S1=30 S2=56 BISO=43 SES: S1=0 S2=5 BISO=2 BISO=2 US=0

Примечание: Выполнялись измерения по одновременному вводу в эксплуатацию двух цифровых трактов (каналы А, В). Испытательный сигнал ПСП не имеет цикловой структуры. Показатели фазового дрожания не нормировались.

